










performs well, and significantly better than the Cartesian or
object-based decay models. We also fit mixture models incor-
porating two- and three-coordinate system models with decay
(Fig. 6D). The BIC analysis showed that the best model was
the joint-based decay model, which was marginally better than
the J�O decay mixture model (0.4 BIC units difference). The
dashed line in Fig. 7A shows the cutoff for models that are not
considered to be distinguishable in terms of their performance
from the best model (i.e., 20 BIC units from the maximum,
which corresponds to a Bayes factor of 10). Therefore, the full
mixture model without decay, the joint-based decay model, and
three mixture models with decay (J�O, J�C, and J�C�O) all
provide equivalent fits to the data. Similar results are seen in
the individual subject cross-validation (Fig. 7B). The best
parameters of the models, degrees of freedom, and BICs are
provided in Table 1.

Experiment 2

Behavioral observations. The extrinsic/intrinsic dichotomy
(Shadmehr and Mussa-Ivaldi 1994), according to which gen-
eralization takes place in one of the two coordinate systems,
has been central to the study of generalization. Since numerous
studies have presented conflicting findings on the coordinate
frames of generalization, we have attempted to carefully re-

produce the original experiment. Subjects adapted to one of
two force fields, either extrinsically or intrinsically defined,
while making point-to-point reaching movements to pseudo-
randomly generated targets. Their ability to make reaches in a
new area of their workspace was then probed by exposing all
of the subjects to these two force fields. If subjects adapted by
learning to predict the perturbing forces in intrinsic coordi-
nates, they would generalize well in the intrinsic field, and vice
versa for the extrinsic field. Since our experiment is a reexam-
ination of a previous, well-known study, we begin by providing
a qualitative description of our findings and where they differ
from the original study.

To characterize trajectories in the absence of perturbations,
all subjects initially performed a block of 250 trials in the
training workspace and then a block of 250 trials in the testing
workspace. All 500 of these reaches were in a null field and
included random trials within which vision of the cursor was
absent. Early reaches in both workspaces were curved, but over
the course of several dozen trials reaches became straight (Fig. 8
depicts late reaches during baseline). Unsurprisingly, there
were no qualitative differences between reaching behaviors in
the training and testing workspaces.

After the baseline blocks we collected data during adaptation
to the force fields. Subjects performed two blocks of 500 trials
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each, with a 3-min rest period in between. Five subjects were
exposed to the extrinsic force field (extrinsic group, Eq. 1),
while another five subjects were exposed to the intrinsic force
field (intrinsic group, Eq. 2). The intrinsic field was designed
such that the forces produced were nearly identical to those of
the extrinsic field in this training workspace. The force fields
perturbed subjects based on the direction and speed of their
movement (for the subjects in the intrinsic group, there was
slight dependence on their limb’s posture as well). The force
fields, having a stable and an unstable axis, tended to accelerate
reaches in some directions, impede reaches in other directions,
and laterally perturb reaches in intermediate directions. As is
typical, with continued exposure to the force field reaching
paths became less curved, their ability to land on target in the
specified time improved, and in general the influence of the
force field became less apparent (Fig. 9). This was true for both
reaches made with vision and those made without.

To determine whether the observed changes were merely the
result of cocontraction, or rather a predictive change in the
motor commands, catch trials were randomly interleaved with
the force field trials. In these catch trials, vision of the cursor
was absent and a null force field was present. In these trials,
reaches deviated in the opposite direction to those in early
learning, as if perturbed by a mirror symmetrical force field
(Fig. 10). The effects of these catch trials grew over time, and

Table 1. Model fits to subject data for experiment 1

Model kj kc ko dj, rad�2 dc, m�2 do, rad�2 dof BIC BIC Improvement over No Generalization

No-decay models
Joint 1 — — — — — 0 �212.0 63.4
Cartesian — 1 — — — — 0 26.5 �175.2
Object — — 1 — — — 0 �65.6 �83.1
C�O — 0.29 0.71 — — — 1 �92.5 �56.2
J�O 0.71 — 0.29 — — — 1 �280.9 132.2
J�C 0.82 0.18 — — — — 1 �248.5 99.8
J�O�C 0.66 0.10 0.24 — — — 2 �294.3 145.6

Decay models
Joint 1 — — 0.93 — — 1 �302.7 154.0
Cartesian — 1 — — 365.88 — 1 �220.2 71.5
Object — — 1 — — 3.01 1 �101.0 �47.7
C�O — 1 0 — 365.93 N/A 3 �210.6 61.9
J�O 0.88 — 0.12 0.71 — 0 3 �302.3 153.6
J�C 1 0 — 0.93 N/A — 3 �293.0 144.3
J�O�C 0.88 0 0.12 0.71 N/A 0 5 �292.6 143.9

The k values are the mixture parameters for the individual coordinate system predictions, which are constrained to sum to 1. The d values are the decay
parameters associated with distance from the training configuration in the 3 different coordinate systems (with the units of distance in radians for angles and
meters for Cartesian distance). The final 3 columns are the degrees of freedom (dof) of the model, the Bayesian information criterion (BIC), and the BIC
improvement compared with the no-generalization model. Dashes are used to indicate parameters that are not fit and are set to zero for the particular model. N/A
refers to fitted parameters that do not affect the model predictions, as the corresponding mixing parameter has a fitted value of zero.
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their paths became more regular (compare the standard devi-
ations between Fig. 10, A and C), suggesting that the subjects
improved in predicting the effects of the force field.

Finally, we probed the ability of subjects to generalize. With
their arm again in the testing workspace, they made 80 reaches
while the field switched randomly between the extrinsic, in-
trinsic, or null fields. All trials were made without vision of the
cursor (see MATERIALS AND METHODS). As in the initial trials of
the first adaptation block, subjects’ reaches were clearly per-
turbed by the fields. In contrast with the original study (Shad-
mehr and Mussa-Ivaldi 1994), it was not evident that subjects
could compensate for the intrinsic force field any better than
the extrinsic field; indeed, it was not evident that they were
even better at making reaches in either field relative to the null
field (Fig. 11). Subjects showed no clear evidence of general-
izing better in one field over another.

Therefore, in terms of the basic learning of the force field,
our results agree with the original study. Subjects adapted to
force fields, and their trajectories became straighter. This was
not just due to cocontraction, since there were predictive
components leading to aftereffects. This adaptation also af-
fected generalization of movements to a test region. However,
we were unable to replicate the original generalization results.
We found no signs of a clear generalization pattern in intrinsic
coordinates. This surprising finding, and the behavioral phe-
nomena leading up to it, are analyzed below.

Behavioral analysis. We began by analyzing reaches made
during the baseline blocks. We averaged over the last 200
baseline trials after translating all the reaches to a common
origin and grouping them according to the eight different
reaching directions. Reaches were very typical in both work-

spaces, with and without visual feedback, with straight paths
and approximately bell-shaped velocity profiles. To quantify
the similarity between the two workspaces, correlations of the
average reaches (both position and velocity) were computed.
Correlations across the training and testing workspaces were
very high, �1.0 for both reaches made with vision (data not
shown) and those made without (Fig. 8).

To assess subject performance during adaptation, we first
performed the same analysis as in the original study. The
reaching trajectories during adaptation were compared with
their corresponding averages during the baseline in the same
workspace. To do this we used the correlation defined in
Shadmehr and Mussa-Ivaldi (1994), � (see MATERIALS AND

METHODS), which is a running average of the inner product of
velocity traces. The average velocity traces during baseline (in
each of the 8 directions, during the last 200 trials without
vision) were compared with their respective averages during
the first, second, third, and last 250 trials of adaptation (again,
separated by direction and using only those reaches made
without vision). With this measure we can quantify how
similar reaches during adaptation are to reaches during base-
line. The correlation � began relatively high, with an across-
subject average of 0.85 during the first 250 trials (Fig. 12A).
All subjects showed an improvement in this correlation as the
trials progressed, and the across-subject average during the
final 250 trials, 0.88, was significantly larger (paired t-test, P �
0.01). Similarly, we also compared � for the trials with visual
feedback (here the trials were compared against their averages
made with visual feedback in the null field). Despite two
subjects who showed a small decrease, the across-subject
average increased from 0.85 to 0.88, a significant improvement
(P � 0.01; Fig. 12B). These findings corroborate the qualita-
tive observation that over time subjects’ reaches tended to
become similar to those made during baseline.

Following the original study’s lead, we then compared
generalization in the extrinsic and intrinsic reaches using the
correlation �. In contrast with the original study, there was no
clear difference between extrinsic, intrinsic, and even null
fields (Fig. 12C). On the whole, we found that subject perfor-
mance was roughly similar in both the extrinsic and intrinsic
fields. The across-subject average for the extrinsic trials was
0.77, whereas the across-subject average in the intrinsic field
was 0.78. In fact, even performance in the null fields was
qualitatively similar when examined with this metric (an av-
erage of 0.81). Whereas in the original study subjects’ perfor-
mance when generalizing in the intrinsic field was clearly
better than in the extrinsic field, we found that only two
subjects displayed significant improvements in the intrinsic
field (adjusted for 10 comparisons). This qualitative discrep-
ancy with the original study merited further scrutiny.

To ask which factors affect generalization performance as
quantified by �, we ran additional statistical tests. We com-
puted a repeated-measures ANOVA to test for an effect of the
group type (either extrinsic or intrinsic) or the three different
fields during generalization. There was no significant effect of
group (F1,20 � 0.937; P � 0.345), and while clearly affecting
trajectories, the force fields had no significant effect on � (F2,20 �
1.529; P � 0.241). This might have been expected, since
performance in the null field was different (and indeed often
better—in 3 of the 4 subjects that experienced the null field,
their scores were best in the null trials) from performance in
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Fig. 10. Average hand paths during no-vision, null field, catch trials in
experiment 2. Similar to Fig. 9, paths are translated to origin, temporally
aligned, and sorted to target. Displayed are the across-subject averages for the
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adaptation.
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either the extrinsic or intrinsic fields (Fig. 12C). This metric, �,
relies on multiple free parameters (e.g., the number of data
points, how the velocity traces are aligned, etc.), and it is not
clear how well it quantifies generalization performance. We
thus wanted to be careful not to prematurely conclude that our
findings were distinct from the original study. Similarly, given
that � is merely one of a number of possible ways to quantify
behavior, we attempted to quantify subjects’ performance in
multiple additional manners to search for a distinction between
extrinsic and intrinsic generalization.

For additional metrics, we choose the commonly used max-
imum perpendicular deviation from a straight reach to the
target, the angular deviation from a straight reach, and the
normalized path length. These three metrics have the benefit of
not relying on any experiment-specific parameters such as
sampling rate or how different reaches are aligned. Finally, for
comparison with �, we also examined the correlation between
trajectories and their corresponding baseline reaches. As in the
original study, we used these four metrics to examine subjects’
reaches, and to look for clear evidence that the subjects
performed better in one of the two generalization fields.

We first describe the results obtained analyzing the perpen-
dicular error (Fig. 13A); the analyses performed with the other
metrics were equivalent. The perpendicular error was averaged
across all reaches without visual feedback in the training and
testing workspaces (Fig. 13A, left; error bars are SEs). The
average error in both workspaces was relatively small, �1–
1.25 cm, with an error in the testing workspace roughly a
quarter centimeter smaller (though not significantly so, paired

t-test, P � 0.065). The perpendicular error during the adapta-
tion and catch trials in the absence of visual feedback was
binned into 10-trial intervals (Fig. 13A, center). Relative to
baseline, the perpendicular error increased by roughly 1 cm in
the first bin of adaptation. There was also a similar increase in
the first 10 catch trials. However, as the trials continued, the
perpendicular error during adaptation trials progressively de-
creased, while the catch trial errors increased. By the end of the
adaptation blocks, the perpendicular error had significantly
decreased and was statistically indistinguishable from baseline
errors (P � 0.083). The catch trial errors, on the other hand,
were now relatively large. These results further verified that
subjects were able to adapt to the force fields, and did so in a
manner consistent with predictive behavior.

During generalization, the perpendicular error was grouped
according to the field experienced (extrinsic, intrinsic, or null)
and the training group (extrinsic or intrinsic). On the whole, the
errors during generalization were large, even larger than those
measured during catch trials (Fig. 13A, right; error bars are
SEs). Moreover, the error was relatively consistent across
conditions, and not a single one was significantly better than
the others. As a further comparison, we performed a repeated-
measures ANOVA to test for the effects of force field and
training group, but neither had a significant effect (F2,20 �
0.768, P � 0.477 and F 1,20 �0.190, P � 0.668, respectively).
Identical analyses were performed with the angular errors,
normalized path lengths, and correlations (Fig. 13, B, C, and
D, respectively). The only statistically significant effect
found was for the angular errors, where there was an effect
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for the force field (F2,20 � 9.937; P � 0.001). In contrast
with the original finding, a post hoc test determined that
angular errors in the extrinsic field were significantly
smaller than in the other fields. Taken together, there was no
clear evidence for an ability to generalize better in the
extrinsic or intrinsic fields.

Given the importance of the original finding, and the impli-
cations of our failure to replicate it, we ran another two groups
of subjects with slight variations to the original protocol. In the
second experiment (experiment 2B), 10 subjects performed the
same protocol described above, but without vision of their
limb. This experiment examined whether vision of the limb
biased performance to either intrinsic or extrinsic coordinates.
In a third experiment (experiment 2C), 10 subjects trained with
the force fields for an extended period of 3 blocks of 500 trials
each. This experiment examined whether the generalization
patterns we observed were due to the amount of adaptation or
the lack thereof. These two additional experiments would help
establish whether our findings were robust, or rather somehow
contingent on the details of our protocol and experimental
apparatus.

In experiment 2B, the lack of vision of the arm had little
effect on subjects’ overall performance. Just as before, subjects
initially generated large errors but by the end of the adaptation
blocks showed significant improvements (data not shown). As
before, ANOVAs were performed to quantify the effects of the
force field and training group for the four metrics. There was
no effect of force field for any of the five metrics (P 
 0.05).
There was an effect for training group with path lengths (F1,20 �
6.223; P � 0.022); however, the intrinsic errors were larger.
Finally, there was an effect of training group for the correla-
tions (F1,20 � 4.524; P � 0.046), where subjects in the intrinsic
group had smaller correlations with baseline. Here again, the
results presented no clear evidence for generalization in one
coordinate system over the other.

In experiment 2C, the overall behavioral results and analysis
showed little change with the added 500 adaptation trials.
Subjects adapted to the force fields but showed no clear ability
to generalize better in either field. Across all five metrics
ANOVAs found no significant effects for the training groups
but a single effect for the force fields in � (F2,20 � 3.928; P �
0.035). A Tukey post hoc test indicated that the correlations
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were significantly smaller in the extrinsic field, yet there was
no significant difference between the reaches in the intrinsic
and null fields. These findings, taken together with the results
of experiments 2B and 2A, very clearly argue that subjects do
not generalize in either an exclusively extrinsic or intrinsic
pattern.

DISCUSSION

We performed two experiments reexamining the issue of the
coordinate frames used when learning novel dynamics in the
context of reaching movements. The first experiment was
designed to test between three possible accounts of the original
findings of Shadmehr and Mussa-Ivaldi (1994). Specifically,
we sought to test whether novel dynamics are encoded in
intrinsic joint-based or extrinsic coordinates, as suggested by
Shadmehr and Mussa-Ivaldi, or object-centered coordinates
linked to the grasped handle. Although subjects clearly adapted
to the force fields, their behavior during generalization did not
conform to a simple interpretation in terms of encoding in any
one of these three categorical coordinate frames. Notably, we
did not obtain clear evidence supporting previous work sug-
gesting that dynamics are encoded in intrinsic coordinates
(Malfait et al. 2002; Shadmehr and Mussa-Ivaldi 1994). The
second experiment attempted to reproduce the original protocol
of Shadmehr and Mussa-Ivaldi. Here again, we found that
although subjects clearly adapted to the force fields, their
ability to generalize was modest at best and did not appear to
favor force field encoding in either intrinsic or extrinsic coor-
dinates.

Our experiments were designed so that subjects would
exhibit relatively unambiguous evidence if they generalized
using a single coordinate frame that generalized globally.
Despite having adapted to the experimental perturbations, there
was no evidence for the encoding of this information in a single
coordinate frame. This suggests that dynamics may be repre-
sented using a combination of coordinate frames or some local
representation that decays with distance from the training
location. To assess these possibilities, we used data from
experiment 1 to evaluate one-, two-, and three-component
mixture of coordinate system models, all with and without
spatial decay. We found that the data could be equally well fit
with the three-component mixture model—combining joint-
based, Cartesian, and object-centered coordinate frames—
without decay, the joint-based decay model, and three different
mixture models with decay (Fig. 7). Given the similarity in fits
of these models, we have not provided clear support for any
one of these models. However, our results clearly show that all
five of these models perform better than a joint-based model
without decay. In experiment 2, we found that despite having
adapted to the experimental perturbations subjects’ motor per-
formance in the generalization area was poor, at times no better
than naive performance. Here again the evidence denied a
simple interpretation in terms of a single coordinate frame that
generalized globally.

One possible interpretation for our collective results is that
newly adapted knowledge related to motor behavior is repre-
sented locally with limited and graded generalization. If the
nervous system adapted by estimating a parameterized model,
such as the matrix of terms that defines a velocity-dependent
force field, generalization should be complete (essentially

equal in performance in all areas of the workspace). On the
other hand, if the nervous system only learns locally around the
input-output pairs specifically experienced, such as states vis-
ited and forces/commands produced, then generalization would
decrease as the change in context (e.g., limb configuration)
increases. There is considerable evidence that sensorimotor
adaptation is a form of local learning that does not generalize
to very different circumstances (Burgess et al. 2007; Donchin
et al. 2003; Gandolfo et al. 1996; Krakauer et al. 2000; Lackner
and Dizio 1994; Mattar and Ostry 2007, 2010; Thoroughman and
Shadmehr 2000). Our findings add to this body of work, and
further argue that adaptation is local. Consistent with the
behavioral evidence, previous computational studies that ex-
amine how movement errors generalize during learning have
found narrow bases of representation (Donchin et al. 2003;
Ingram et al. 2010; Kadiallah et al. 2012; Thoroughman and
Shadmehr 2000; Thoroughman and Taylor 2005). Finally,
there are also neural data that suggest localized tuning curves
(Cohen and Andersen 2002; Coltz et al. 1999; Georgopoulos et
al. 2007; Paz et al. 2003). These observations are consistent
with the notion that neural populations encode local features of
learning and should have difficulty extrapolating to completely
novel circumstances. Together these findings suggest that the
kind of adaptation explored in our experiments is unlikely to
completely generalize to new regions of the workspace, regard-
less of the coordinate frame used to represent these behaviors.

Since the original study by Shadmehr and Mussa-Ivaldi
(1994), a number of studies have examined how learning of
dynamics generalizes across different contexts and have found
contrasting evidence. Studies examining transfer from one arm
to the other have shown that dynamics are transferred in an
extrinsic coordinate frame when the perturbation is introduced
abruptly but that there is limited transfer when the perturbation
is introduced gradually such that subjects are unaware of motor
errors (Criscimagna-Hemminger et al. 2003; Malfait and Ostry
2004). Another study found evidence that the coordinate frame
used to represent the dynamics of hand-held tools depends on
the familiarity of the tool dynamics (Ahmed et al. 2008). A
recent study argues that force-field adaptation uses both extrin-
sic and intrinsic coordinates but generalization may be sensi-
tive to the orientation of visual feedback (Parmar et al. 2011).
There is also evidence that adaptation to a visuomotor pertur-
bation takes place in both extrinsic and intrinsic coordinate
systems (Brayanov et al. 2012). This study used a broad range
of reaches to thoroughly probe the structure of generalization.
Interestingly, they concluded that generalization uses a model
of combined intrinsic and extrinsic coordinates in a multipli-
cative gain field with a local representation. Taken together,
our study and this previous study provide ample evidence for
multiple coordinate frames and local learning during general-
ization.

The suggestion that multiple coordinate frames are used is
consistent with evidence in both modeling and neurophysio-
logical studies. Recent modeling work suggests that adaptation
should take place simultaneously in multiple coordinate frames
(Berniker and Kording 2008, 2011) as well as multiple time-
scales (Kording et al. 2007; Smith et al. 2006). These results
suggest considerable flexibility in the way in which dynamics
may be encoded across different tasks and contexts. Neuro-
physiological studies of motor cortex activity during arm
movement indicate that multiple features of the movements—
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which may be associated with different coordinate frames—are
represented. Thus there is evidence for representations of hand
position (Kettner et al. 1988), velocity (Georgopoulos et al.
1982; Kakei et al. 1999; Moran and Schwartz 1999), acceler-
ation (Flament and Hore 1988), force (Evarts 1968), limb
configuration (Scott and Kalaska 1995, 1997), musclelike tun-
ing (Li et al. 2001; Sergio and Kalaska 1997), and even visual
space (Georgopoulos et al. 1989).

There are noteworthy studies that have found supportive
evidence for intrinsic representations during force-field gener-
alization. In a follow-up study of intrinsic generalization
(Shadmehr and Moussavi 2000), subjects were trained in a
field similar to that used here and then tested for generalization
in a new workspace. As in the original study by Shadmehr and
Mussa-Ivaldi (1994), subjects were exposed to either a field
that rotated with their limb or one that remained invariant with
respect to their hand. In contrast with both experiments pre-
sented here, subjects in that experiment trained by repeatedly
reaching to only four targets (roughly 144 times per target),
with continuous visual feedback and without catch trials. In
another similar study, subjects were highly trained, on a curl
field, adapting to a single reaching direction (400 practice
reaches) and tested for generalization in a single reaching
direction with continuous visual feedback (Malfait et al. 2002).
Two more recent studies examined generalization under essen-
tially identical training, reaching to a single target in a curl field
(Haswell et al. 2009; Orban de Xivry et al. 2011). Here again
both studies found evidence for intrinsic representations. The
subjects in the above experiments were highly trained relative
to the subjects in our experiments 1 and 2, where reaches were
made to multiple targets, in a direction-dependent field, with
catch trials and trials without visual feedback. Furthermore, the
subjects in these studies were tested for generalization in a
similarly focused manner, with visual feedback, whereas our
subjects were tested broadly, either without visual feedback or
in error clamps. Possibly because of the focused training and
testing, these previous studies found contrasting results. How-
ever, it is important to note that in the Malfait study the
subjects’ ability to generalize was local, and performance
during reaches to a target 90° away was poor. This is consistent
with our findings here.

One puzzling aspect of our results is the failure of experi-
ment 2 to replicate the original results of Shadmehr and
Mussa-Ivaldi (1994). We attempted to match the adaptation
and generalization protocols of the two experiments. Whereas
our subjects demonstrated clear evidence of adaptation, not
unlike the original study, we see dramatic differences in the
generalization patterns between the two studies. There is the
possibility that generalization is especially sensitive to minor
differences in experimental protocol, the apparatus, or the
robotic control algorithms that affect the force field (e.g., faster
control loops, inertial compensation for robot dynamics and
force feedback controllers). However, we think it is unlikely
that such differences explain the difference in results. The fact
that the results of our experiments 1 and 2 are consistent in not
supporting global generalization in joint-based coordinates,
even though the protocol, apparatus, and control algorithms
were different, suggests that our findings are robust. We also
note that in experiment 2 we ran nearly four times the number
of subjects that were run in the original study. Thus our failure
to replicate the original results is unlikely to be due to lack of

statistical power. Given these considerations, we propose that
the findings presented here are an accurate depiction of how
human subjects generalize.

The paper by Shadmehr and Mussa-Ivaldi (1994) has been
exceptionally important for the development of the motor
control field (with over 1,200 citations at the time of this
writing). It established the use of robots to probe adaptation
and learning; it showed that humans adapt by predicting
perturbations; it formalized the search for the coordinate sys-
tem of these internal models; and it concluded that generaliza-
tion takes place using intrinsic coordinates. We only take issue
with this last finding. Although we present evidence for mul-
tiple coordinate frames being used simultaneously or for a
decaying generalization pattern, it seems fair to suggest that the
coordinate system of generalization and internal models may
be far more complicated than currently assumed.
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