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Summary

Skilled object manipulation requires the ability to estimate, in advance, the motor commands
needed to achieve desired sensory outcomes and the ability to predict the sensory consequences
of the motor commands. Because the mapping between motor commands and sensory outcomes
depends on the physical properties of grasped objects, the motor system may store and access
internal models of objects in order to estimate motor commands and predict sensory conse-
quences. In this chapter, we outline evidence for internal models and discuss their role in object
manipulation tasks. We also consider the relationship between internal models of objects em-
ployed by the sensorimotor system and representations of the same objects used by the percep-

tual system to make judgments about objects.



Although we have designed computers that can beat grand masters at chess, we have yet
to design robots that can manipulate chess pieces with anything like the dexterity of a 5 year old
child. What makes humans so good at object manipulation in comparison to robots? There is no
question that the anatomy of the human hand is well adapted for manipulation. On the sensory
side, the hand is richly endowed with tactile sensors that provide exquisitely precise information
about mechanical interactions between the skin and objects. On the motor side, the numerous
kinematic degrees of freedom of the hand enables it to grasp objects of all shapes and sizes.
These sensory and motor capabilities provide the building blocks; however, it is the way in
which manual tasks are organized and controlled by the nervous system that enables flexible and
dexterous object manipulation. Skilled object manipulation requires the ability to generate motor
commands tailored to the goals of the task and the physical properties of the manipulated objects.
This involves both feedforward control, based on prediction, and feedback control that is shaped
to the demands of the task. This chapter will focus on predictive mechanisms in the control of

object manipulation tasks and on memory representations that support such prediction.

Prediction and internal models

Skilled object manipulation requires the ability to estimate, in advance, the motor com-
mands needed to achieve desired sensory outcomes. For example, when lifting objects people
scale the rate at which they increase vertical load force to the expected weight of the object and
often begin to attenuate the increase in load force prior to lift-off (Johansson and Westling
1988a). This ensures that objects are lifted smoothly and quickly regardless of their weight. In
addition, when using a precision grip with the tips of the thumb and index finger on either side of
the object, people scale horizontal grip forces to both the predicted load force and the expected

friction between the digits and object (Johansson and Westling 1984). This ensures that grip



forces are large enough to prevent slip but not so large as to cause fatigue or damage to the hand
or object.

Skilled object manipulation also requires the ability to predict the sensory consequences
of motor commands. By comparing predicted and actual sensory feedback, the motor system can
monitor the progress of the task, adjust motor commands if a mismatch occurs so that the goals
of the task can be achieved, and update predictive mechanisms so as to reduce future mis-
matches. A key feature of object manipulation tasks is that they are composed of a series of ac-
tions or phases that are often bounded by mechanical events that represent sub-goals of the task.
These events involve either the making or breaking of contact between the fingertips and an ob-
ject or between a grasped object and another object or surface. For example, the task of picking
up and replacing an object on a tabletop involves three mechanical events: contact between the
digits and object at the end of the reach phase, the breaking of contact between the object and
table top at the end of the load phase, and contact between the object and table top at the end of
the replacement phase.

Although sensory feedback may be continuously predicted and monitored throughout all
action phases, tactile signals associated with mechanical contact events play an essential role in
the control of object manipulation tasks. For example, when the fingertip contacts an object, en-
sembles of tactile afferents provide rich information about the timing, magnitude, direction, and
spatial distribution of forces, the shape of the contact site, and the friction between the skin and
the object (Johansson and Westling 1984; Jenmalm and Johansson 1997; Goodwin et al. 1998;
Jenmalm et al. 1998, 2000; Birznieks et al. 2001; Johansson and Birznieks 2004). Thus, tactile
signals not only confirm successful completion of the current action phase, they also provide

critical information for controlling subsequent phases. By comparing actual and predicted sen-



sory feedback associated with contact events, the motor system can detect mismatches and re-
spond intelligently. For example, when lifting an object, the motor system predicts the time at
which it will receive tactile signals indicating that the object has lifted off the surface. If an ob-
ject is lighter than expected, lift-off will occur before the predicted time and the resulting sensory
mismatch will trigger a decrease in load force and grip force. Conversely, if the object is heavier
than expected, lift-off will not occur at the expected time and the resulting mismatch will trigger
and increase in grip force and load force (Johansson and Westling 1987; 1988a).

When moving a hand-held object, the mapping between motor commands and sensory
outcomes depends on the dynamics of the object; i.e., the relationship between forces applied to
the object and its motion. Therefore, in order to accurately predict the sensory consequences of
our actions, we need to take the dynamics of the object in account. In other words, the motor sys-
tem must have an internal representation, or internal model, the captures the mechanical behav-
iour of the object. For example, to accurately predict the time of lift-off when lifting an object,
the motor system must know the weight of the object. Similarly, if we lift and replace an object,
attached to a table top by a spring, we need to know the stiffness of the spring to accurately pre-
dict the time of contact as the object is replaced. With information about intended arm motor
commands (i.e., efference copy) and an estimate of the current state of the arm and object, an
internal model of the object can be used to predict or simulate the consequences of actual motor
commands (Kawato 1999; Wolpert and Ghahramani 2000; Flanagan et al. 2000).

The control of grip force in manipulation tasks may also be based on predictive mecha-
nisms that make use of internal models of object dynamics (Johansson and Westling 1988a;
Flanagan and Wing 1997). When lifting and moving familiar objects with the grip axis normal to

the plane of object motion, grip force is adjusted in phase with, and thus anticipates, movement-



dependent modulations in force and torques acting tangential to the grasp surfaces (Flanagan and
Wing 1993, 1995; Flanagan and Tresilian 1994; Blakemore et al. 1998; Goodwin et al. 1998;
Wing and Lederman 1998). Moreover, people can learn to generate anticipatory grip force ad-
justments for a variety of loads that depend on different kinematic parameters of the movement
(Flanagan and Wing 1997; Flanagan et al. 2003). Because the mapping between arm motor
commands and load force depends on object dynamics, the motor system can not rely on a set
mapping between arm and grip force motor commands to modulate grip force in phase with load
force. Instead, we have argued that motor system predicts load force (and hence the required grip
force) using an internal model of the dynamics of the object (Flanagan and Wing 1997; Wolpert
and Flanagan 2001; Flanagan et al. 2003). Our ability to independently modulate arm movement
motor commands and grip force motor commands has been nicely demonstrated by Danion and
colleagues who showed that predictive adjustments in grip force are sensitive to loads applied to
the object but not to equivalent loads applied to the arm (Danion 2004; Descoins et al. 2006).
Because the transformation from arm motor commands to fingertip load forces depends on both
arm and object dynamics, accurate prediction of load forces acting the fingertips when moving a
grasped object requires knowledge of arm dynamics in addition to knowledge of object dynam-
ics. Thus, grip force can be used to examine the structure of internal models of arm dynamics in
addition to object dynamics (Flanagan and Lolley, 2001).

The term forward model refers to an internal model that is used to predict the conse-
quences of motor commands whereas the term inverse model refers to an internal model that is
used to estimate the motor commands required to achieve desired sensory outcomes. Shadmehr
and Mussa-Ivaldi (1994) examined the acquisition of inverse models of object dynamics using a

task in which participants moved a handle attached to a robotic device that could generate com-



plex movement-dependent loads (or force-fields). Although the force-field initially perturbed the
trajectory of the hand, participants adapted such that they could move the handle directly to tar-
gets in much the same way as they did before the force-field was turned on. Importantly, when
the force-field was turned off following adaptation, hand trajectories were again perturbed. This
indicates that participants did not simply stiffen the limb to compensate for the force-field but,
instead, learned an inverse model of the dynamics of the handle (Shadmehr and Mussa-Ivaldi
1994). Note that after-effects are not observed following adaptation if the object in hand is re-
leased but are seen if participants re-grasp the object (Lackner and DiZio 2005; Corthos et al.
2006). This indicates that internal models can be recruited and de-recruited when grasping and
releasing objects. Indeed, the fact that people can seamlessly lift myriad familiar objects shows
that we can rapidly recruit and de-recruit appropriate internal models as we grasp and release ob-
jects.

As noted above, anticipatory adjustments in grip force could be generated using a for-
ward model of the object to predict the load forces resulting from arm motor commands. How-
ever, it is also possible that grip forces could be generated using an inverse model. If one as-
sumes that motion planning involves specifying a desired object trajectory, an inverse model
could be used to transform the desired trajectory into the load forces required to move the object
and hence the grip forces required to stabilize the object. However, studies showing the people
can accurately predict grip forces even when they are unable to control the movement of the ob-
jects (Flanagan et al. 2003; see also Flanagan and Lolley 2001) suggest that grip forces are likely
predicted based on an forward model of the object. In any case, what is clear is that knowledge
of object dynamics is crucial for the accurate prediction of required grip forces in manipulation

tasks.



It is important to emphasize that internal models of objects, as defined by most research-
ers in the field, are not necessarily complete or veridical representations of the actual dynamics
of the object. Indeed, most studies examining how people adapt to unusual and novel loads ap-
plied to the hand or arm have shown that learning is action and context specific (e.g., Wang and
Sainburg 2004; Nozaki et al. 2006). For example, studies examining adaptation of reaching
movements to novel loads applied to the hand have shown limited transfer of learning when the
object (or force-field linked to the object) is rotated relative to the arm (Shadmehr and Mussa-
Ivaldi 1994; Malfait et al. 2002). These results suggest that when adapting to novel and unusual
loads, people do not learn the full dynamics of the object mapping motion to applied force. In-
stead, they appear to learn a mapping between object motion and context- and action-specific
motor commands (Shadmehr and Moussavi 2000; Mah and Mussa-Ivaldi 2003). It is an open
question whether, with sufficient practice manipulating an object with novel dynamics, people
form a single internal model that approximates the true dynamics of the object or a set of internal
models tailored to specific contexts and actions.

In contrast to the unusual and novel loads often employed in studies of motor learning,
the loads experienced in most natural manipulation tasks are familiar. For example, many of the
objects we lift and move on a daily basis are standard inertial loads where the applied force var-
ies with acceleration. When lifting familiar objects, the motor system does not have to learn a
new class of dynamics; rather the challenge is to predict the load parameters. Thus, when lifting
objects with inertial loads, the motor system generally attempts to predict the mass (or weight) of
the object. People are very good at using information about object size and shape, obtained
through vision or touch, to predict the weight (Johansson and Westling 1988a; Gordon et al.

1991a; 1991b; Mon-Williams and Murray 2000) and weight distribution (Wing and Lederman



1988; Salimi et al. 2003; Jenmalm et al. 1998; Johansson et al. 1999) of objects. Although we
know of no experiments that have examined the control of fingertip forces when lifting similar
objects composed of different materials, it seems likely that people also use visual (and perhaps
haptic) information about object material to estimate weight. Gordon and colleagues (1993) have
shown that people predictively scale their fingertip forces for familiar objects of varying size,
shape, and material (e.g., a glass candle holder versus a box of crisp bread) and it is possible that
they may be using information about material, in addition to object identify, to predict object
weight. Although visual (and haptic) information about object size and shape often leads to good
predictions about weight and weight distribution, such prediction is based on correlations and
can be erroneous. Ultimately, it is not until the object is lifted, and tactile feedback received, that
the weight and weight distribution of the objects can be determined. Similarly, the friction be-
tween the digits and the contact surfaces can only be accurately determined from tactile feedback
arising when the digits contact the object.

When prediction of object physical properties based on visual or haptic cues goes awry,
reflex-mediated corrections of force output are observed (see above). At the same time, memory
representations are updated such that, if the object is lifted a second time, prediction improves.
Johansson and Westling (1984) coined the term sensorimotor memory to refer to knowledge of
object properties gained from previous lifts. In the absence of useful visual cues, sensorimotor
memory typically dominates fingertip force control after a single lift. For example, when repeat-
edly lifting a test object, the weight of which is occasionally and unexpected altered, people up-
date their force output within a single trial following a weight change (Johansson and Westling
1988a). In the presence of misleading visual cues, several trials may be required before sensori-

motor memory dominates (Gordon et al. 1991c; Flanagan and Beltzner 2000; Grandy and West-



wood 2006). Sensorimotor memory is closely related to notion of an internal model. In a study
using objects with misleading size cues about weight, we have shown that sensorimotor memory
for weight can be long lasting (Flanagan et al. 2001). In particular, participants who lifted a small
high density cube and a large low density cube several times on one day exhibited accurate pre-
diction of required fingertip forces when lifting the same objects a day later. Such persistent sen-
sorimotor memory is tantamount to an internal model.

The idea that sensorimotor memories, or internal models, encode object mechanical
properties has been challenged by Quaney and colleagues (2003). These authors showed that
pinching a force transducer before lifting an object influences the grip force used during the lift.
Based on this observation they argued that sensorimotor memory is based on recent fingertip ac-
tions rather than object properties. However, Cole and colleagues (2006) recently demonstrated
that this finding does not extend to load force; the generation of vertical load forces at the finger-
tips prior to lifting an object does not influence load force development during the lift. Cole and
coworkers suggested that separate memory representations may be used for grip and load force
control (see also Quaney et al. 2005). Because the load force required to lift the object depends
solely on the physical properties of the object (i.e., object weight), we suggest that an internal
model of the object is used to control load force. In contrast, grip force depends not only on
weight but is also influenced by the frictional conditions at the contact surfaces and the grip
safety margin selected by the individual to guard against slip. Given that grip force depends on
factors that are independent of the object (e.g., the dryness of the skin), it seems reasonable that
the control of grip force may involve memory mechanisms that are distinct from the internal
model of the object and that can be influenced by actions, involving the fingertips, on other ob-

jects.



To test the idea that people might remember motor commands or actions rather than ob-
ject properties, we conducted an experiment in which we asked participants to lift an object, in-
strumented with force sensors (Figure 1A), to different heights within a prescribed time period
(Merritt and Flanagan 2004). The object was attached to a manipulandum that could simulate
different loads including an inertial and a viscous load. For each load, participants first lifted the
object 20 times to a target height of 7 cm and then lifted the object another 20 times to a target
height of 14 cm. In all lifts, participants were asked to lift the object to the target within a 200 ms
time window. Figure 1B show kinematic and forces records for three lifts of the inertial (or
mass) load performed by a representative participant. The solid black, solid gray, and dashed
black curves illustrate the last 7 cm lift, the first 14 cm lift, and the second 14 cm lift. Note that
reasonably good generalization was observed in the first lift to the 14 cm target as the participant
increased both grip and load force. In all three lifts, grip force was modulated in phase with load
force indicating good prediction of the load. Figure 1C shows corresponding records for three
lifts with the viscous load performed by another representative participant. Although this load is
somewhat unusual, the participant adapted well to the load. Specifically, in the last lift to the 7
cm target, the participant accurately and smoothly reached the target and grip force was modu-
lated in phase with velocity dependent load force. When first lifting the viscous load to the 14 cm
target, the object undershot the target. However, partial generalization of learning was observed
in that the participant appropriately increased both grip force and load force and continued to
modulate grip force in-phase with load force. These results indicate that when lifting both famil-
iar and novel loads, participants acquire knowledge of dynamics that is linked to the object.
(Note that it is not clear how memory representations based on motor commands could support

generalization across lifts of varying height and speed that require different motor commands.)



INSERT FIGURE 1 ABOUT HERE

Neural Basis of Anticipatory Grip Force Adjustments

Recently, Pilon and colleagues (2007) have argued that the modulation of grip force with
changes in load force, observed in many manipulation tasks, results from biomechanical rather
than neural mechanisms. Specifically, these authors suggested that once an object is grasped,
tangential load forces compress and move the finger pads and that this leads to changes in grip
force that are proportional to the load force. Although this idea may seem attractive in terms of
simplifying grip force control, there is an abundance of evidence demonstrating that anticipatory
grip forces result from neural control processes and that load and grip forces are not, in fact, me-
chanically coupled as assumed (but not tested) by Pilon and coworkers. In this section of the
chapter, we will describe some of this evidence.

Clear decoupling between changes in grip force and changes in load force can be ob-
served in precision grip lifting when object weight is unexpectedly decreased (Johansson and
Westling 1988a). When a participant expects to lift an 800 gram object but actually lifts a 200
gram weight, the object lifts off earlier than expected. Due to biomechanical factors (e.g., muscle
shortening), there is a rapid cessation of load force increase at the moment of lift-off (see Figure
2 from Johansson and Westling 1988a). However, grip force continues to increases for some 100
ms after lift-off. (After 100 ms, grip force starts to decrease due to a reflex-mediated mechanism
triggered by the earlier than expected lift-off.) For the first 100 ms after lift-off, the grip force
profile is indistinguishable from the profile observed when the participant both expects and re-
ceives the 800 gram object. Thus, for a critical 100 ms window there is a strong dissociation be-
tween changes in grip force and changes in load force and grip force is unaffected by dramatic

changes in load force. This result clearly demonstrates that load force and grip force are not me-



chanically coupled and shows that both anticipatory and reactive changes in grip force are
achieved through neural control mechanisms.

Blakemore and colleagues (1998) have shown that when a participant holds an object to
which a cyclical load force is externally applied, grip force is modulated but lags behind changes
in load force by some 100 ms. This indicates that participants could not predict the external load
and instead relied on reactive mechanisms to modulate grip force. This decoupling between grip
and load changes provides another example where grip and load forces are not mechanically
coupled. Pilon and colleagues (2007) cite the Blakemore study but argue that because partici-
pants employed high overall grip forces (around 10 N on average), the finger pads would not
have moved much and that therefore grip force was not modulated in phase with load force.
However, Flanagan and Wing (1995) showed that when moving an object in a cyclic fashion,
grip force can vary between 10 and 25 N and still be modulated in phase with load force (see
Figure 2 from Flanagan and Wing 1995). Thus, if it is true that the finger pads do not move when
grip forces are large (i.e., around 10 N or higher), then the mechanical explanation for grip-load
coupling posited by Pilon and colleagues can not explain the coupling observed by Flanagan and
Wing (1995). (It also cannot explain the coupling observed when lifting heavy objects where
large grip forces are observed (e.g., Johansson and Westling 1988)). Conversely, if the finger
pads do move even with large grip forces, then the decoupling between grip and load force ob-
served by Blakemore and colleagues demonstrates that finger pad motion does not lead to grip-
load coupling.

Using a task similar to that one employed by Blakemore and colleagues (1998), Herms-
dorfer and Blankenfeld (2008) observed that when the externally applied sinusoidal load force is

suddenly and unexpectedly turned off (in catch trials), grip force continues to be modulated (in



the same way as in non-catch trials) for 100 ms. If the changes in grip force were due to me-
chanical interactions, this continued modulation would not be observed. Witney and colleagues
(1999) examined the control of grip force in a bimanual task in which participants grasped the
top and bottom of a virtual object with the left and right hand. Participants were instructed to pull
up with the left and, at the same time, prevent the object from moving. This required the genera-
tion of equal and opposite load forces with the two hands as well as grip forces with both hands.
On unexpected catch trials, the two objects could be “unlinked” so that no load force was deliv-
ered to the right hand when the participant pulled up with the left hand. In these catch trials, par-
ticipants generated increases in grip force with the unloaded right hand that closely matched
those produced in normal “linked” trials. This result indicates that the modulation of grip force
(in both linked and unlinked trials) was not caused by mechanical coupling with load force.
Several studies have shown that grip force is modulated in anticipation of contact forces
that occur when the hand-held object strikes another object (Johansson and Westling 1988b; Tur-
rell et al. 1999; Delevoye-Turrell and Wing 2003). For example, when participants drop a ball
into a cup held in a precision grip, they increase grip force shortly before the anticipated contact
and grip force is scaled to the predicted contact force (Johansson and Westling 1988b). Obvi-
ously, these predictive changes in grip force are achieved by neural control mechanisms. Johans-
son and Westling (1988b) also examined reflex-mediated changes in grip force when the ex-
perimenter dropped the ball and the participant was unaware that the ball had been dropped. The
sudden increase in load force due to contact resulted in very small mechanically induced changes
in grip force that were orders of magnitude smaller than the subsequent reflex-induced increase
in grip force observed when the mechanical effects of the perturbation are no longer present (see

Johansson et al. 1992; Flanagan and Wing 1993; Cole and Abbs 1988 for similar results). In



other words, the load force at the fingertip did not result in significant mechanical changes in
grip force.

We have shown that grip force is modulated in phase with changes in load force when
participants grasp objects, such as a cup, by inserting their index finger and thumb inside and
pushing outwards with the finger nails (Flanagan and Tresilian 1994). Thus, anticipatory cou-
pling between grip force and load force is observed when the fingertip pads are not employed in
gripping. Indeed, predictive coupling between normal and load forces is observed even when
participants lift and move objects held between the teeth (unpublished observations from both
the Johansson and Flanagan labs) or use the hand to push and pull on an object held between the
teeth (Westberg et al. 2001; Figure 2). Figure 2 show results from an experiment in which par-
ticipants held a bar between their teeth and hand and were instructed to either push the bar to-
ward the mouth or pull it away from the mouth. As shown by the individual records shown in
Figure 2B, these pushes and pulls created load forces acting at the teeth and participants modu-
lated their bite force in anticipation of the load. Figure 2C shows averaged bite and load force
traces for pushes. On average, bite force increased 44 ms ahead of load force and was therefore
predictive. Clearly, motion of the finger pads cannot explain the anticipatory modulation of bite
force with load force.

INSERT FIGURE 2 ABOUT HERE

Finally, Hager-Ross and colleagues (1996) examined the mechanical properties of the
fingertips when subjected to load forces while gripping an object. These authors showed that grip
force changes only slightly due to mechanics. Moreover, they found that grip force could in-
crease or decrease depending on the direction of loading. Thus, fingertip mechanics simply can-

not account for large grip force modulation observed during movement. All of the results de-



scribed above (as well as a number of other results that we have left out) clearly show that an-
ticipatory grip force adjustments observed in manipulation tasks are based on predictive neural
control mechanisms and cannot be explained by the mechanics of the fingertip pads. Indeed,
these results rule out any mechanical explanation (e.g., based on finger tendons) for grip-load

coupling.

Independent Object Representations in Action and Perception

When people lift a large object and a similar but smaller object of equal weight, they
typically judge the smaller of the two objects to be substantially heavier. This size-weight illu-
sion, first described well over 100 years ago (Charpentier 1981; Murray et al. 1999), is experi-
enced by almost all healthy people (Davis and Roberts 1976; Ross 1969), including children as
young as 2 years of age (Robinson 1964; Pick and Pick 1967), and is not weakened when par-
ticipants are verbally informed that the objects are equally weighted (Flourney 1894; Nyssen and
Bourdon 1955; Flanagan and Beltzner 2000). The size-weight illusion is powerful when only
visual cues about size are available, as when lifting viewed objects by strings, but is strongest
when haptic cues about object size are available, as when the hand grasps the objects directly
(Ellis and Lederman 1993).

Recently, we ruled out the hypothesis (Ross, 1969; Granit, 1972; Davis & Roberts, 1976)
that the size-weight illusion arises from a mismatch between actual and expected sensory feed-
back related to lifting (Flanagan & Beltzner 2000). We asked participants to repeatedly lift a
small cube and an equally weighed large cube, in alternation, for a total of 40 lifts (Figure 3A).
As expected, when lifting the two cubes for the first time, participants generated erroneous pre-
dictions about object weight based on size. That is, they overestimated the fingertip forces re-

quired to lift the large object and underestimated the forces required to lift the small object. Fig-



ure 3B shows fingertip forces and force rates for the first lifts of the large and small cubes per-
formed by a representative participant. During the first lift of the small cube, the initial rise in
grip force and load force was too small and lift-off did not occur when expected. The resulting
mismatch between expected and actual tactile feedback gave rise to a reflex-mediated increase in
both grip and load force and lift-off then occurred. During the first lift of the large cube, over-
shoots of the grip and load forces were observed and lift-off occurs earlier than expected. In this
case, the mismatch between expected and actual tactile feedback triggered a decrease in force
output approximately 100 ms later.

Although participants were initially fooled by the misleading size cues, they adapted their
force output to the true weights of the objects within 5-10 pairs of lifts. Figure 3C shows finger-
tip forces and force rates for the eighth lifts of the large and small cubes (lifts 15 and 16) per-
formed by the same participant shown in Figure 3B. In these lifts, the force and force rate func-
tions for the small and large cubes were very similar and lift-off occurred at about the same time
for both cubes. Importantly, grip force and load force neither overshoot nor undershoot their final
levels and no corrective adjustments in force were observed. Thus, the participant scaled their
force output appropriately for the two cubes and also generated accurate sensory predictions
about the timing of lift-off. This pattern of results, observed in all participants, indicates that the
sensorimotor system acquired accurate representations of the weights of the two cubes (see also
Westwood and Grandy 2006; Davidson and Wolpert 2004). Using two new groups of partici-
pants, we assessed the strength of the size-weight illusion after a single lift of each cube and after
20 lifts of each cube (Flanagan and Beltzner 2000). This involved asking participants to assign
numbers corresponding to the weights of the two cubes after lifting them. We found that the

strength of the illusion was as strong after 20 pairs of lifts as it was after the first lift.



Taken together, these results indicate that the brain maintains two independent represen-
tations of object weight: a perceptual representation that is influenced by the size of objects (as
revealed by the size-weight illusion) and a sensorimotor representation that is not. The results
indicate that the size-weight illusion does not arise from a mismatch between actual weight and
the sensorimotor representation of weight. Instead, we suggest that the illusion stems from a
mismatch between the actual weight of the object and the perceptual representation of object
weight that continues to be influenced by object size even when the object is lifted a number of
times and the sensorimotor representation of weight is updated (Flanagan and Beltzner 2000).

The finding that the brain maintains separate sensorimotor and perceptual representations
for object weight can be related to the growing body of work demonstrating the sensory informa-
tion is processed differently (and in different brain regions) depending on whether the informa-
tion is used for the guidance of action or for perceptual tasks. For example, Goodale and his col-
leagues have provided evidence from behavioural, neuropsychological, and neuroimaging stud-
ies that visual information about object size, shape and orientation is processed in distinct neural
pathways depending on whether the information is used to control grasping or make perceptual
judgments about the objects (e.g., Goodale et al. 1991; Milner and Goodale 1995; Hu and Goo-
dale 2000; Culham et al. 2003; Ganel and Goodale 2003).

We have suggested that the smaller of two equally weighted objects is judged to be heav-
ier because it is heavier than would be expected based on size. Such expectations are based on
the statistical relationship between size and weight learned through experience manipulating
myriad objects. In addition to influencing perception, this statistical knowledge is extremely
valuable in guiding our actions. Although motor commands based on such expectations will

sometimes be inappropriate (as when lifting size-weight stimuli), they enable the motor system



to make good guesses most of the time. Our results (Flanagan and Beltzner 2000; Flanagan et al.
2001) show that when we encounter an object that is heavier or lighter than expected, the sen-
sorimotor system can acquire a new (and long-lasting) representation of the object without af-
fecting the perceptual representation. Presumably, the perceptual representation is unaffected be-
cause lifting one or two objects with abnormal density does not appreciably affect the learned
correlation between size and weight. It is unclear what happens when the weight of a new object,
but one that belongs to a given family or type of objects, closely matches the expected weight. In
principle, if predictions based on the size and type of object are accurate, it would not be neces-
sary to form a sensorimotor representation (or internal model) of that specific object. However,
this question has not been investigated and more work needs to be done to understand the rela-
tionship between correlative knowledge about the properties of families of objects (e.g., how
weight scales with size for a given object family) and knowledge about the properties of individ-

ual objects in the control of object manipulation tasks.
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Figure captions

Figure 1. Generalization of sensorimotor memory when lifting to different heights. A: Partici-
pants grasped and lifted an object instrumented with sensors that measured the forces applied by
the tips of the index fingertip and thumb. The object was attached to the tip of a robot manipu-
landum that could simulate different loads. The contact surfaces mounted on each force sensor
could freely spin so that the object could effectively rotate about the grip axis. In addition, the
joint between the object and manipulandum allowed rotation of the object about any axis or-
thogonal to the grip axis. B and C: Kinematic and force records when lifting an inertial (B) and a
viscous load (C) load. The solid black curves are from the last of 20 lifts to the initial 7 cm target
and the solid gray curves are from the next trial that was the first lift to the 14 cm target. The
dashed black curves represent the second lift to the 14 cm target. The gray boxes represent the

200 ms time window in which participants were instructed to lift the object to the target.

Figure 2. Predictive coupling between bite force and load force. A. The participant held a bar
with the teeth and fingertips at either end and was instructed to use the hand to push and pull the
bar while preventing it from moving with the teeth. In each trial a target load force was displayed
on a monitor. Forces normal and tangential to the contact surfaces were recorded using 6-axis
force-torque transducers built into the bar. The load force was defined as the magnitude of the
vector sum of tangential forces at the teeth. B. Examples of single trial forces when the bar was
pushed and pulled by the hand. The dashed line shows the target load force. C. Averaged bite
force (solid trace) and load force (dashed trace) records for pushes. On average, bite force in-

creased 44 ms ahead of the load force. Adapted from Westberg et al. 2001.



Figure 3. Sensorimotor adaptation when lifting size-weight stimuli. A: In alternate trials, partici-
pants lifted either a large or a small cube by grasping a handle, mounted on top of the cube, with
the tips of the index finger and thumb on either side. The handle could be moved quickly be-
tween cubes and was instrumented with two force-torque sensors with circular contact surfaces
(3 cm in diameter) covered in sandpaper. B and C: Grip force, load force, grip and load force
rates, and the reading from a light sensitive diode signaling lift-off recorded in the first two lifts
(B) and lifts 15 and 16 (C) performed by a representative participant. This participant lifted the
large object (thick traces) and then the small object (thin traces) in each pair of lifts. The trials
are temporally aligned to the time at which load force started to increase. The vertical dashed
lines mark lift-off times. In the eighth trial, the lift-off times for the large and small cubes were

indistinguishable. Adapted from Flanagan and Beltzner 2001.
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