
Real-​world tasks typically involve a sequence of actions 
that are performed to achieve a high-​level goal. Such 
tasks engage decision-​making processes that deter-
mine which movement to make next and when to 
make it, how those movements that are selected are 
planned and controlled and how movement and task 
goals are dynamically updated in response to changes  
in the world.

As an example of the inherent links between 
decision-​making and action planning, consider a tennis 
player. Even at the level of planning and executing a sin-
gle movement (such as a backhand aimed up the line), 
substantial decision-​making is involved. Specifically,  
the player must decide how to coordinate and execute the  
shot to trade off reward (shot success) and costs (energy 
and injury). The first section of this Review will dis-
cuss how various costs and rewards shape the planning 
and execution of single movements associated with  
a single goal.

At another level of decision-​making, the player must 
choose, often under time pressure, which of many pos-
sible movements they should perform. This choice 
involves selecting where to aim their shot (short or long, 
for example) and which type of shot to perform (such as 
a drop shot or lob). In the second section of this Review, 
we discuss how the brain plans and executes move-
ments when presented with multiple potential targets 
or goals (and thus multiple potential movements) and 
how this is affected when there is limited time to choose 
between them.

As the player prepares to execute a given shot, hav-
ing selected a movement goal, their opponent’s actions 
(such as running to the net) might force a revision of 

the goal. In the third section, we will discuss how infor-
mation about choice options that arrives over time can 
result in modification of the goal and hence the ongoing 
movement.

Employing decision-​making at a strategic level, a 
player will often prepare a sequence of movements 
designed to ultimately win the point (they may serve wide,  
move to the net and volley to the open court, for example).  
In our final section, we will discuss how decisions 
related to a sequence of movements tend to optimize 
performance across a task and maximize the extraction 
of task-​relevant information.

In this Review, we discuss how decision-​making 
processes involved in the shaping, selection, revision 
and sequencing of movement operate to guide sensori-
motor behaviour. Whereas traditional models and the-
ories have viewed the processes of decision-​making as 
being distinct from those involved in action planning 
and control, a key theme to emerge from this Review is 
that decision-​making, in the context of action, dynami-
cally interacts with the sensorimotor system at multiple 
levels. In exploring this theme, and integrating insights 
gained from behavioural, neurophysiological and com-
putational approaches, we hope to provide insight into 
the bases on which sensorimotor decisions are formed 
and implemented as well as constraints on biologically 
plausible models of decision-​making.

Movements directed to a single goal
Building on the seminal work of Woodworth1, the gen-
eration of purposeful movement has traditionally been 
conceptualized as involving two distinct phases: a pre-​
movement planning phase, in which key parameters 
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of the upcoming action are specified and readied for 
implementation, and a separate control phase, in which 
online corrective processes fine-​tune the movement 
to ensure successful completion2–4. When researchers 
began developing quantitative models of goal-​directed 
actions in the 1980s, the initial focus of this work was on 
movement planning. In particular, a number of models 
were developed to address what is known as the problem 
of redundancy — the fact that the goal of an action, such 
as to grasp a cup, can often be achieved with any number 
of different movement trajectories. One way of resolving 
this problem is to select motor commands that minimize 
some cost — a scalar measure that characterizes some 
attribute of a particular movement. In the context of 
target-​directed reaching movements, a number of such 
costs have been proposed, including the variability of 
the final hand position (across repeated movements)5 
and the jerkiness (changes in acceleration) of the trajec-
tory of the hand during the reach6. Similarly, it has been 
shown that motor commands can be selected to optimize 
explicit reward. For example, when pointing towards a 
rewarding target surrounded by penalty areas, people 
choose an aim location that optimizes reward while  
taking into account natural movement variability7,8.

These early models focused on feedforward planning 
and often assumed that such planning involves spec-
ifying a desired trajectory (for example, a trajectory 
in which jerkiness is minimized and the hand moves 
smoothly in a straight line to the target) that the motor 
system attempts to generate. However, they tended to 
put little emphasis on the control processes through 
which ongoing sensory feedback is used to guide action. 
More recent accounts of goal-​directed movement, such 
as optimal feedback control (OFC) models9–11, emphasize 
an important role for feedback control in target-​directed 
reaching. According to such models, controlling a move-
ment involves the selection of a ‘control policy’ that gov-
erns how sensory feedback will be used in real time to 
generate motor commands. For example, the control 
policy will specify ‘feedback gains’ that determine how 
robustly the motor system will respond to mismatches 
between the current state of the arm and the final goal 
state. In addition to shaping how the arm is driven 
towards the goal, these gains determine how the system 
responds to errors that may arise owing to natural vari-
ability in motor commands12 or external perturbations13. 
The control policy thus determines how the movement 
will evolve as a function of the state of the motor system 
and how the motor system will handle errors.

It is important to note that the principle of optimi-
zation is still central to OFC models. The parameters 
of the control policy are selected to minimize a cost, 
which is typically defined as a combination of energy 
expenditure and inaccuracy11. However, the traditional 
distinction between movement planning and movement 
control is blurred in these models because the control 
policy can specify, on the basis of the initial state of the 
system and the goal state, the motor commands involved 
in initiating movement. According to OFC models, 
movement planning is concerned with the specification 
of feedback gains and movement control is the use of 
these feedback gains to drive movement.

A critical feature of OFC models is the concept of 
‘minimum intervention’, whereby sensory feedback is 
used to correct movement errors that interfere with the 
goal of the action but not errors that are irrelevant to 
the goal. Intervening to correct for errors that do not 
threaten the goal is undesirable because such interven-
tion will generally require increased effort and add noise 
into the system. The prediction of the minimum inter-
vention principle also provides an opportunity to 
directly test desired trajectory models against OFC mod-
els. Imagine that your hand is bumped sideways when 
reaching towards either a small knob or a wide lever that 
opens a door. The OFC model predicts a stronger lat-
eral correction of the hand movement when reaching 
towards the knob in comparison to the lever because 
the goal of opening the door can still be achieved by 
contacting the lever at a different location than might 
have originally been planned. However, desired trajec-
tory models predict equally strong corrections in both of 
these two contexts because the putative aim is to follow a 
particular trajectory. Experimental tests along these lines 
have provided evidence for the minimum intervention 
principle and hence support for OFC models14,15 (Fig. 1a).

The ability to respond quickly to perturbations is 
critical for skilled and dexterous motor behaviour, and 
a recent focus of work in the field has been to exam-
ine the nature and timing of the sensorimotor mech-
anisms that lead to movement corrections based on 
visual16,17, proprioceptive15,18 and even tactile19 feed-
back. A common approach used in this work to study 
the rapid updating of goal-​directed limb movements is 
to examine how human participants respond to small 
mechanical perturbations of the limb20. These studies 
have shown that in addition to spinal-​generated cor-
rective responses (termed R1 responses), which reflect 
simple muscle stretch reflexes and can be observed in 
electromyogram (EMG) activity within 25–50 ms of the 
perturbation21, mechanical perturbations also give rise 
to a second phase of EMG corrective responses, termed 
R2 responses. R2 responses occur 60 ms after the pertur-
bation and, consistent with being transcortical in nature, 
can exhibit remarkable sophistication: they have been 
shown to reflect the physics of the limb and environ-
ment22–24 as well as features of the target, such as size15. 
Evidence suggests that R2 responses are in continuous 
operation, as they occur even for very small disturbances 
in limb position that are close to the natural variability 
of limb motion25. In bimanual motor tasks, in which 
one hand is perturbed, rapid R2 responses can also be 
seen on the unperturbed hand, albeit with a small delay 
(~10 ms), indicating the fast integration and coordina-
tion of sensory feedback processing across the cortical 
hemispheres26,27.

When considering the types of sensory informa-
tion used in rapid movement corrections, the role  
of visual feedback has received considerable attention. 
One way in which this has been typically studied has 
been to examine how the availability or removal of the 
ability to see the hand at certain times before or during 
target-​directed reaching affects movement direction 
accuracy and the reach trajectory28–30. A general theme 
to emerge from this work is that early (initial) and late 
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(terminal) components of a reach movement are dif-
ferentially affected by the removal of visual feedback, 
suggesting that these components are governed by dis-
tinct subprocesses31,32. Other studies have examined cases 
in which, during the reach movement, either the reach 
target is displaced6,33 or a visual representation of the 
hand’s position (such as a cursor) is altered34. Although 
both of these manipulations in humans result in rapid 
corrective responses (within ~160 ms)35,36, the influ-
ence of the presence of distractors on the corrections 
made for each type of perturbation suggest that separate 
mechanisms are involved in processing the two types of 
visual information16,37 (Fig. 1b,c). Specifically, the fact that 
corrections to displacements of the hand cursor are rel-
atively unaffected by distractors, in comparison to cor-
rections to displacement of the target, may indicate that 
there is a dedicated allocation of attentional resources 

to visual feedback processing of the hand’s position16,37. 
This distinction may also reflect, in part, the availability 
of proprioceptive feedback for the limb that can be used 
in estimating cursor position, but that is not similarly 
available for estimating target position.

Choosing between competing action goals
In many everyday actions, we must select a particular 
target from among multiple alternatives. According 
to traditional serial models of action planning38,39, 
we first select the target object and only then specify 
and prepare the corresponding goal-​directed move-
ment. However, this serial processing view has been 
challenged by both behavioural and neurophysiolog-
ical evidence suggesting that these two processes —  
selection and specification — can operate continuously 
and in parallel40.

Fig. 1 | corrective motor responses are tuned to task 
features. a | In this task , participants were required to 
perform target-​directed reaching movements using a 
robotic interface. On some trials, small mechanical 
perturbations were applied to the limb during the task. 
Traces show the paths of individual hand movements, 
recorded using the robotic interface15. Unperturbed 
movements to narrow or wide targets tend to be straight 
and to move to the closest point on the target. However, 
the application of mechanical loads immediately after 
movement onset disrupts execution of the planned 
movement. The resulting hand-​movement paths obey the 
principle of minimum intervention. That is, for a narrow 
target, the hand paths correct to enable the participant to 
reach the target. For a wide target, no correction is 
necessary and the hand just reaches to another point on 
the target. b,c | Visual attention influences the processing 
of target but not hand-​movement information16. In this 
experiment, subjects performed a bimanual reach task , 
using a robotic interface to move two cursors to their 
respective targets. During the task , one of the cursors or 
one of the targets was displaced and the corrective reflex 
response was measured as the lateral force applied to the 
robotic interface by the participant. In addition, 
immediately after the onset of movement, a flash of light 
could draw attention either towards (perturbation 
attended) or away from (perturbation unattended) the side 
of the perturbation (part b). There was no significant 
difference in the onset of the lateral corrective forces that 
occurred in response to cursor displacement when flashes 
were on the attended versus non-​attended sides (part c, 
left panel); however, there was a significant delay in the 
corrective response to target displacement when visual 
attention was drawn away from the side of the 
perturbation (part c, right panel). Vertical dashed lines 
represent the time window over which the corrective 
forces were averaged to obtain an estimate of the strength 
of reflex response (from 30 ms before to 70 ms after 
response onset). Grey horizontal line represents zero 
lateral force. Parts b and c show that distracting visual 
information is more efficiently filtered during the 
extraction of hand information than it is during the 
extraction of target information, suggesting a specialized 
mechanism that links representation of the hand in visual 
and motor systems. Part a is adapted with permission from 
ref.164, Elsevier. Parts b and c are adapted with permission 
from ref.16, Elsevier.
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Some of the earliest evidence for this idea stems from 
behavioural findings showing that the movement tra-
jectories of individuals reaching towards targets will, 
depending on the context, initially deviate towards 
non-​target stimuli placed nearby41–44. This finding  
suggests that, in some cases, movement specification 
can precede target selection. Consistent with this idea, 
neurophysiological studies in humans and nonhuman 
primates have shown that competing reach targets 
elicit separate neural representations in sensorimotor 
brain areas before one of the targets being selected45–49.  
For example, it has been demonstrated that when 
there is uncertainty about which of two rules — each 
specifying a particular movement goal — would be 
applied to a single spatial cue, neurons in frontoparietal 
reach areas simultaneously represent both movement 
goals before rule specification50 (Fig.  2a). Notably, 
this was despite the fact that the sequence of events  
during the task afforded the animals the possibility of 
first waiting for the rule to be specified and only then 
representing the single corresponding movement  
associated with that rule.

One interpretation of these neurophysiological 
findings, which resonates with the influential notion 
of action affordances51, is that the motor system, before 
target selection, prepares competing movement plans 
for potential targets40,52. However, it is also plausible 
(and difficult to rule out) that the activity of neurons 
in reaching-​related areas instead represents purely spa-
tial and/or memory-​related information about multiple 
potential action targets (such as their directions)45,53,54. 
Indeed, because in these tasks the final target is often 
cued before the requirement to execute a movement, 
it is not immediately obvious why the brain would go 
through the computational expense of automatically 
converting viewed or remembered potential targets 
into corresponding movement representations in the  
sensorimotor cortex.

Work on the oculomotor system has shown that 
movement-​related neurons in oculomotor control 
structures, such as the superior colliculus and frontal 
eye fields, simultaneously encode competing targets  
for eye saccades55–60. Although a matter of ongoing 
debate, it has been suggested that this activity repre-
sents competing target-​directed saccadic eye move-
ments. Likewise, the extent to which competing reach 
movements may be specified in advance of target selec-
tion remains a matter of some debate. Indeed, there are  
reasons why this idea may be viewed as less plausible for 
reach movements than it is for eye movements.

First, the control of reaching movements (unlike 
oculomotor control) can require the parameterization 
of multiple and often redundant degrees of freedom.  
That is, for any given target-​directed limb movement, 
there are often an abundance of possible motor solutions 
that can be used to achieve the same goal. This is the case 
not only because of the infinite number of different reach 
paths and the range of hand speeds along each path that 
could, in principle, be specified but also because any 
one single joint motion can be achieved by different 
combinations of muscles61. Furthermore, in addition to 
often having to account for external forces applied to the 

hand14,22, the limb control system must compensate for 
complex intersegmental dynamics. Together, this indicates 
that there are several additional complexities in planning 
limb movements when compared with eye movements.

Second, the oculomotor and limb movement systems 
perform vastly different functions in everyday life. Limb 
movements occur relatively infrequently and are usually 
voluntary in nature, whereas we typically perform multi-
ple saccadic eye movements per second when sampling 
the visual environment. It is perhaps not surprising then 
that the oculomotor system might, at any given moment, 
prepare multiple competing eye movements to salient 
visual items in one’s immediate surroundings. That the 
limb control system should follow the same rule is not 
as directly inferred from its everyday function62. Indeed, 
there is evidence that, when performing coordinated eye 
and hand movements towards the same target location, 
the two effector systems are differentially affected by the 
presence of a non-​target (distractor) stimulus63.

A number of behavioural studies have sought to 
provide direct evidence in support of the view that the 
brain specifies competing reach movements in advance 
of target selection. Many have used tasks in which par-
ticipants are simultaneously presented with multiple 
potential reach targets and, before knowing the final 
target location (which is cued after movement onset), 
are required to launch a reach movement towards the  
competing targets (termed go-​before-you-​know 
tasks)64–70. In such tasks, one might expect the initial 
movement to be influenced by competing motor plans. 
Indeed, it has been shown that people initially launch 
reaching movements towards an intermediate or mid-
point location between the competing targets, which has 
been interpreted as arising from the specification, and 
simultaneous execution, of competing action plans64,70. 
However, it has been shown that launching movements 
towards an intermediate or averaged spatial location also 
minimizes the motor costs associated with the corrective 
movements required once the target has been cued71–74. 
When the strategic benefits of intermediate movements 
in go-​before-you-​know tasks are mitigated by reducing 
the time available to make in-​flight corrective move-
ments or by increasing the spatial separation between 
targets69,71,75 (Fig. 2b), such spatial averaging is largely 
abated. This finding would seem to argue instead that 
spatial averaging reflects an optimization based on task 
constraints and motor costs69,71,72. Nevertheless, these 
findings do not actually address how such optimized 
movements may themselves be computed or explain the 
representations on which they are based.

One obvious possibility is that approximately  
optimal averaging behaviour could be based on visual 
representations of the potential targets. That is, partic-
ipants could prepare and execute a single movement in 
a direction that is the average of the visual directions  
to the competing targets. This possibility would seem to 
provide a useful, and readily implementable, heuristic 
for optimizing movements in cases of target uncertainty. 
Alternatively, the visual targets could be transformed 
into motor representations of these targets (that is, reach 
directions or final hand positions) and these representa-
tions could be used when determining the optimal 

Action affordances
Representations of the actions 
that objects and stimuli in the 
environment afford at the level 
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Rapid movements of the eyes 
that change fixation from one 
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associated action in the motor 
system.
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reach direction. To disentangle these two interpreta-
tions, a recent study76 applied target-​specific, gradual 
visuomotor rotations to dissociate the visual direction 
of the potential targets from the direction of the move-
ments required to reach the same targets, unbeknownst 
to participants (Fig. 2c). This dissociation revealed that 

movements executed towards multiple potential targets 
constitute a weighted average of the movement paths 
executed towards each target separately and were not the 
result of visual averaging. As such, these findings pro-
vide robust evidence that spatial averaging results from  
a direct visual-​to-motor mapping of target locations 

Fig. 2 | Multiple potential actions can be specified before target selection. a | Schematic depiction of an experiment 
measuring neural activity in the parietal cortex of a monkey taking part in a potential motor goal task50. In this task , a single 
ambiguous spatial cue was presented before a delay (memory) period. Animals were then given a contextual rule cue, 
which provided the instruction for them either to initiate a reach towards the position indicated by the preceding spatial 
cue (a direct motor goal) or to reach towards the opposite direction (an inferred motor goal). Importantly , the latter reach 
was made towards a location in which no object had been presented visually , ruling out the possibility that any activity 
related to this reach option could be due to some form of visual memory. The move line indicates the animal’s movement 
onset time. The surface plot depicts the average activity of parietal reach region (PRR) neurons over the course of the 
experiment, aligned to the preferred direction of the neurons relative to the reach direction specified by the cue. 
Examination of activity during the memory period shows that PRR neurons simultaneously represent both motor goals 
(direct and inferred) when the rule associated with the spatial cue is not yet known. Similar results were observed in dorsal 
premotor cortex. Note that once the animals execute the rule-​instructed reach, the neurons with preferred directions 
corresponding to the reach direction significantly increase their activity. b | Reach averaging in ‘go-​before-you-​know’ 
tasks is influenced by required movement speeds69. In this task , participants performed reaches towards two competing 
targets, with the final reach target being revealed only after movement onset. Reach trajectories, from a single participant 
over multiple trials, for slow (left) and fast (right) movement speeds, are shown. Spatial averaging, wherein initial 
movements are launched towards an intermediate (or averaged) spatial location, occurs only for slow movements, when 
time allows for corrective movements to be made. c | Spatial averaging reflects an average of corresponding movement, 
and not visual, directions76. The left panel shows representative reach directions, from a single participant, for one-​target and  
two-​target trials (in which the two outermost targets were presented) in go-​before-you-​know tasks. Two-​target trials show 
standard spatial averaging behaviour. The right panel shows that, when gradual, imperceptible mismatches between the 
hand position and the viewed cursor representing the hand position (that is, visuomotor rotation of the hand cursor) are 
applied to the rightmost target (denoted by curved blue arrow), such that subjects must move their hands straight ahead 
in order to reach both the central and rightmost targets, individuals in two-​target trials tended to reach in the direction 
that was the average of the movement paths associated with the two targets. This leftward shift in averaging behaviour 
from pre-​adaptation (left panel) to post-​adaptation (right panel) learning of the visuomotor rotation suggests that spatial 
averaging occurs at the level of motor representations. Part a is adapted with permission from ref.50, Elsevier. Part b is 
adapted from ref.69, Springer Nature Limited. Part c is adapted with permission from ref.76, Elsevier.
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onto corresponding motor representations of those  
targets, a transformation that may provide the basis 
for the computation and launching of optimal initial  
movement directions.

A challenge for future neurophysiological work will 
be to determine whether, in go-​before-you-​know tasks, 
competing targets elicit separate neural representations 
in reach-​related brain areas45,50 or a single representation, 
corresponding only to the initial movement trajectory. 
In addition, it will be important for future behavioural 
work to investigate cases in which averaging behaviour 
should, and should not, be expected. Although the work 
discussed above provides evidence that reach parame-
ters such as direction or final hand position are used 
to compute optimal initial movements, there is also 
evidence that the dynamics associated with compet-
ing reach movements, such as grip force, are not aver-
aged77. Furthermore, given that spatial averaging can be 
influenced by a wide array of cognitive factors (such as 
reward history78, task set and attention79) (Box 1), how 
such top-​down cognitive processes and biases modify 
representations of the competing targets remains an 
open and active area of investigation50,80,81.

Directly mapping potential visual targets onto associ-
ated motor representations might provide a mechanism 
through which movement-​related costs and constraints 
can be incorporated when making decisions about 
action selection. Consistent with this idea, recent work 
shows that when humans make free choices between 
two potential reaching movements, they tend to choose 
the movement that has the lowest movement-​related 
cost82,83. A more recent study shows that the predic-
tion of the effort associated with candidate movements 
is computed very quickly and can influence decisions 
at the level of the motor cortex within 200 ms (ref.84). 
This suggests that the decision-​making process can 
rapidly access knowledge of the future biomechanical 
costs of both movements in order to compare these and 
select the lowest-​cost option. Other recent work has 
explored the subjective (internal effort) and objective 
(energy expenditure) cost functions utilized in choosing 
between effortful reaching movements85,86 and how free 
choices between reach targets are biased by prior target 
predictability and expected value87. Together, this work 
indicates that decision-​making related to action selection 
is governed by many of the same underlying optimiza-
tion principles that are utilized in the control of actions, 
suggesting considerable overlap in the neural processes  
supporting these two processes.

The above findings suggest that in both go-​
before-you-​know situations and free-​choice scenarios, 
at least some motor parameters associated with compet-
ing targets are specified before movement selection and 
initiation. However, these results do not provide direct 
support for the idea that individuals specify compet-
ing movements in the much more naturalistic case in 
which target cuing occurs before movement execution 
(that is, go-​after-you-​know tasks). Direct evidence for 
this idea instead comes from a recent study88 in which 
participants, before target cuing, were presented with 
two potential targets, one of which could be reached 
using two different trajectories (that is, an ambiguous 

target). It was found that the reach movement generated 
when the ambiguous target was cued often borrowed 
kinematic components of the movement that would have 
been required for the non-​cued, competing target (the 
non-​ambiguous target). This interaction, which resulted 
in faster reaction and movement times, could arise 
only if multiple potential movements were specified in 
advance of target cuing. Follow-​up work further demon-
strated that this movement ‘co-​optimization’ effect can 
also be observed across sequentially presented poten-
tial targets89, suggesting that individuals successively 
prepare actions for each potential target as it appears in 
the sequence. This finding is noteworthy as it may shed 
insight into the mechanisms through which the senso-
rimotor system operates in natural, everyday environ-
ments, in which the available action options change from 
one moment to the next as we move in the world.

Revising movement
In response to changes in the world or our evaluation of 
the values of different action options, the brain continu-
ously adjusts and refines its goals in order to achieve the 
desired outcome. One strategy used by the sensorimotor 
system, which facilitates rapid decision-​making during 
unfolding actions, is the specification of sophisticated 
contingency plans in situations in which the goal of an 
action may be threatened. An example is provided by a 
recent study90 in which participants performed reaching 
movements with obstacles located either side of a direct 
path between the hand’s starting location and the target 
(Fig. 3a). On some trials, a mechanical load was briefly 
applied to the limb early in the movement so that the 
hand was perturbed towards one of the obstacles. For 
small perturbations, the corrective response counter-
acted the perturbation so that the hand passed between 
the obstacles, whereas for large perturbations the 
response was in the direction of the perturbation so that 
the hand passed around the obstacle. For intermediate 
perturbations, the hand would sometimes pass between, 
and sometimes around, the obstacle, and this choice 
was evident in muscle activity as little as 60 ms after the 
perturbation. Thus, the motor system can switch, with 
remarkable speed, from one motor plan to another in 
order to accomplish the task goal.

The same study also examined a situation in which 
participants were presented with two targets and told 
they could reach for either target (Fig. 3b). In the absence 
of a perturbation, participants always selected the clos-
est target. However, when a perturbation was applied 
that pushed the hand towards the alternative target, par-
ticipants almost always switched their movement goal 
to this other target. The muscle activity in the switch 
trials could be distinguished from muscle activity in 
single-​target trials (in which the same perturbation was 
applied) within ~75 ms of the perturbation. Thus, there 
is a 15 ms cost associated with the decision to switch 
to a new goal rather than execute a new plan for the 
same goal. The impressive speed of this target updat-
ing process suggests that the re-​routed movement was 
not planned de novo but rather specified in advance 
of movement as a contingency plan and maintained in 
parallel during the unfolding action to be used in the 
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event that the movement goal became compromised.  
As discussed above, the notion that the brain specifies 
parallel motor goals would allow rapid movement revi-
sions in response to unexpected changes in the envi-
ronment and is broadly consistent with the idea that 
the brain can maintain multiple motor representations  
or movement plans52,73,91–93.

To study in more detail the evolution of decision-​
making processes and their links to sensorimotor 
systems, perceptual decision-​making tasks have also 
been used. Typically, individuals are required to dis-
criminate between two directions of motion in a 
noisy random dot display and to indicate their decision 
with an eye movement. Such tasks have led to a quan-
titative understanding of the mechanisms that evaluate 
sensory evidence and reach a decision94–96. Several for-
malisms propose that a representation of noisy evidence 
is accumulated in favour of each choice until it reaches 
a threshold, leading to that decision94. Such formalisms 
have well-​described neural correlates and can explain 

both the accuracy and speed of decision-​making97. 
Although perceptual decision-​making has primarily 
been studied with saccadic eye movements and has been 
generally viewed as a process that is completed before 
actions are specified, more recent studies in humans 
performing reaching movements have revealed a much 
more continuous flow from the decision process to the 
motor system98.

In decision-​making, the decision variable is the 
accumulated evidence in favour of one decision over 
another. In sensorimotor control, a key variable is the 
strength of feedback gains, which are thought to be set 
by the control policy governing an action. To examine 
the relationship between decision-​making and motor 
control processes, a recent study asked participants to 
indicate the direction of motion in a random dot dis-
play by making either an elbow flexion or extension 
movement99 and manipulating the difficulty of the task.  
The cue to respond was a rapid extension of the elbow 
generated by a robotic interface, which resulted in 

Box 1 | ‘cognitive leaking’ into movement control

when required to select one of several potential reach targets, the kinematics (trajectory) of the hand can reveal aspects of 
the cognitive and decision-​making process underlying target selection98,149–154. in particular, when subjects are encouraged 
to initiate a movement quickly, their initial movement direction and subsequent movement adjustments can reveal 
different cognitive influences on motor planning. For example, it has been shown42 that reaches made towards a target 
object in the presence of a distractor (non-​target) object will sometimes deviate towards the distractor43. this finding 
suggests that distractor objects initially compete for action selection and are later suppressed44. a general finding of this 
work is that such initial deviations towards distractor stimuli occur only when they share characteristics and/or features 
with the target79,155, providing support for the idea that planning, and not visual stimulation alone, is responsible for driving 
such deviations.

In situations in which there are two or more competing targets, studies have shown that hand trajectories can be biased 
by both bottom-​up (target luminance)156 and top-​down (the presence of numerical symbols)157–160 influences. a recent study 
showed that reach trajectories were influenced by the rewards associated with two simultaneously presented targets (see 
the figure, part a). reach trajectories were straighter towards the selected target when the selected and unselected targets 
were associated with positive (+5 points) and neutral (0 points) rewards (red traces), respectively, than when they were 
associated with neutral (0 points) and negative (–5 points) rewards (blue traces; solid and dashed lines represent reaches 
made to the left and right targets, respectively), suggesting that gains are processed more quickly than losses78. this finding 
suggests that movements generated in the presence of competing targets are influenced not only by motor 
representations of these targets (which could be used to determine motor costs) but also by higher-​level representations 
that include reward valence.

in principle, such movement biases could be exploited by observers to make inferences about the task parameters and 
intentions that govern a person’s movements. indeed, it has been shown that someone watching a video clip of an actor who 
chooses which of two potential targets to reach towards is faster to indicate which direction they think the actor is reaching 
than someone watching an actor who is being told where to move161. this difference is because the actor generates subtle 
preparatory actions when deciding between options that are absent or reduced when no decision is required (see the figure, 
part b)161. this finding suggests that hand trajectories can provide a readout of an evolving competition between motor 
goals and that this can be readily exploited by observers to predict action outcomes162,163.

rt, reaction time. Part a is adapted with permission from ref.78, aPa. Part b is adapted with permission from ref.161, Proceedings of the 
National academy of sciences usa.

Random dot display
A visual display of moving dots 
frequently used in perceptual 
decision-​making experiments. 
Determining the net direction 
of the dots can be made 
difficult for the observer by 
varying the number of dots 
that are moving in the same 
direction (coherence) 
compared with the number of 
dots that move in random 
(non-​coherent) directions.
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flexion stretch reflexes (to counteract the elbow exten-
sion), the magnitude of which could be assessed through 
EMG. By fitting an accumulate to bound (drift-​diffusion)  
model to the accuracy of the participants’ responses, 
it was possible to estimate the accumulated evidence 
in favour of the choice (the decision variable) on 
each trial. This estimate allowed the researchers to 
show that the magnitude (the gain) of the medium 
and long-​latency flexion stretch reflexes (R2 and R3 
responses) increased almost linearly with the accu-
mulated evidence in favour of a flexion movement. 
This finding suggests that the motor system receives 
a continuous flow of information from the decision 
process, which it uses to preset the gain of the flex-
ion reflex so as to reach the appropriate target more 
quickly when cued. This result complements findings 
in eye movements in nonhuman primates100 and sug-
gests that the brain does not wait for a decision to be  
completed before recruiting the motor system but 

rather continuously relays information linked to  
a probable motor response.

Decision-​making and sensorimotor control pro-
cesses are further entwined by the time delays that are 
present in the sensorimotor system. For example, there 
is a sensory delay between the presentation of a stim-
ulus and the accumulation of evidence in brain areas 
involved in eye movements, such as the lateral intrapa-
rietal area97,101. In addition, even after the decision var-
iable crosses a threshold leading to a decision, there is  
a delay in generating the appropriate motor response97,101. 
The sum of these delays can be as long as 450 ms for a 
manual response. This delay means that whenever we 
initiate an action on the basis of a stream of perceptual 
information — even if the onset of the action terminates 
the perceptual stream (in the case of an eye movement 
away from the stimulus, for example) — there will be 
additional information in the processing pipeline that 
cannot be used for the initial decision but could still be 

τ

τ

Fig. 3 | rapid switching between sensorimotor decisions on the basis 
of context. a | Obstacle avoidance behaviour reveals the preparation of 
contingency plans during reaching90. Reaching movements were made 
between a starting location and a target, with obstacles on either side of 
the straight line path to the target. When small mechanical perturbations 
were applied, the subjects corrected their reach to pass between the 
targets (lines show paths on individual trials). When large perturbations 
were applied, the subject corrected their reach in the direction of the load 
so as to pass around the left obstacle. When medium perturbations were 
applied, on some trials the subject chose to pass around the obstacles (red 
lines) and on other trials they chose to pass between the obstacles (blue 
lines). Traces at the bottom show electromyography (EMG) responses 
recorded from the lateral triceps and averaged across subjects during 
performance of the reaching task. The decision to avoid the obstacle to the 
left versus right can be observed as a difference in muscle activity at ~60 ms 
after application of the perturbation (indicated by the asterisk). This finding 
shows that, for a single reach target, the motor system can flexibly switch 
between motor plans with remarkable speed. The stretch response epochs 
of muscle activity are as follows: R1 = 20–45 ms; R2 = 45–75 ms; 
R3 = 75–105 ms; and early voluntary (EV) = 105–135 ms. These epochs range 

from purely spinal-​generated corrective responses (R1) to those involving 
increasing cortical involvement (R2–EV)20. b | Target selection behaviour 
reveals rapid switching between multiple spatial goals90. Black paths show 
unperturbed movements when a participant reaches to either a single 
target (left) or two possible targets (right). When perturbed leftward, a rapid 
correction is seen to a single target (blue traces). However, in the presence 
of two targets, the participant on most trials reaches for the second target 
(red traces). Bottom, EMG responses from the lateral triceps, averaged 
across subjects, during the performance of the target selection task. 
Differences in muscle activity corresponding to redirected movements to 
the second target versus the single target were observed ~75 ms after the 
perturbation. When compared with panel a, which shows the decision time 
required to implement a new plan for the same spatial goal, this result 
shows that there is only an additional 15 ms of decision time required to 
switch to a new goal. This marginal time cost suggests that the motor 
system separately maintains contingency plans alongside the executed 
action in the event that the task goal becomes threatened. a.u., arbitrary 
units. Adapted with permission from Society for Neuroscience, from Rapid 
online selection between multiple motor plans, Nashed, J. Y. et al., 34, 2014 
(ref.90); permission conveyed through Copyright Clearance Center, Inc.

Accumulate to bound 
(drift-diffusion) model
A well-​defined model in which 
evidence is accumulated for 
one or other choice options at 
each time step and integrated 
until a predetermined decision 
threshold is reached.
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processed. In tasks in which the response is a ballistic 
eye movement, such processing is hard to appreciate. 
However, studies of reaching movements have shown 
that such post-​initiation processing can have impor-
tant effects. In a perceptual decision-​making task in 
which the required response was a reach towards one 
of two targets, specified by the stimulus, movements 
sometimes started towards one target before veering 
towards the other, even when the stimulus was extin-
guished on initiation of the movement102. Such ‘change-​
of-mind’ trials can be explained by the accumulation 
process continuing after movement initiation, with the 
evidence changing in favour of the other target. Using 
such a model, it was possible to explain the frequency 
of trials in which subjects changed their mind to either 
correct an error or spoil a good start as a function of trial 
difficulty102. The neural representation of such changes 
of mind has recently been described in the single-​trial 
neural population activity of the motor cortex103 and 
prefrontal cortex104 of nonhuman primates, wherein the 
neural state initially reflects one choice before changing 
to reflect the final choice (Fig. 4a,b).

Although this recent work demonstrates that 
incoming sensory information can influence and 
update the motor responses used for perceptual 
reporting, it has also been recently shown that the 
features of the motor responses themselves can influ-
ence perceptual decisions. One study105 showed that 
different levels of physical effort associated with 
reporting two directions of dot motion with the hand 
could bias perceptual reports towards the less-​effortful 
option. Strikingly, these biasing effects were effector-​
independent, transferring (at least initially) to other 
response modalities that did not have increased effort, 
such as a vocal response. It has also been demonstrated 
that increasing the physical effort associated with a 
target-​directed motor response results in a corre-
sponding reduction in the frequency of changes of 
mind towards those targets, suggesting that subjects 
trade off accuracy and effort106,107. Taken together, 
this recent work suggests that in perceptual decision-​
making tasks, the motor system, rather than acting as 
an impartial observer and conveyer of an upstream 
perceptual decision, can influence how sensory inputs 
are transformed into decision variables. This general 
notion fits within the broader context of psychological 
studies on embodied cognition that show, for example, 
that the perceived steepness of hills and distances 
of landmarks, estimates of jumping height and even 
selection of target versus non-​target objects, can all 
be influenced by the presumed efforts and limitations  
of the motor system108–111.

The role of confidence — the subjective degree of 
certainty that a correct choice has been made — has 
received a great deal of attention in recent work on 
decision-​making112–114. This attention is because con-
fidence can be influenced by factors such as decision 
time115 and plays an important role in optimizing choices. 
For example, subjects in post-​decision wagering tasks 
tend to choose a small but guaranteed reward in regimes 
in which they are likely to have low confidence com-
pared with their choices in regimes in which confidence 

is high112. One recent study showed that initial confi-
dence, choice and reaction time (as well as changes of 
confidence and choice) can be coherently explained by 
a simple race model116 (Fig. 4c,d).

Confidence can also have a substantial effect on 
sequences of movements. When we make a sequence 
of choices, we often need to get them all correct to 
achieve a goal; however, we do not receive feedback 
on whether individual decisions are correct. It has 
recently been shown that the confidence in the first of 
two decisions affects the way the decision-​making pro-
cess is set up for a second decision117. If both choices 
must be correct in order for subjects to receive a 
reward, subjects take longer (and are therefore more 
accurate) to make the second decision if they have 
high confidence in the first decision. That is, partici-
pants invest more time on the second decision when 
they have high confidence that the first decision was 
correct. In a drift-​diffusion model developed to cap-
ture this behaviour, the height of the threshold on the 
decision variable for the second decision increased 
linearly with confidence in the first decision117. This 
finding suggests that confidence has a role in setting 
the parameters for future decisions and that decision 
criteria can be adjusted rapidly between decisions so 
as to optimize performance.

Sequencing movements
Real-​world action tasks typically involve a sequence of 
movements in which the final state associated with one 
movement in the sequence sets the initial state for the 
next and so on118. Researchers interested in the sequenc-
ing of movements have often used tasks in which partic-
ipants generate a series of finger presses. These include 
the serial reaction time task, in which participants have 
to respond to visual stimuli using a finger press at a pre-
scribed pace, and the discrete sequence production task, 
in which participants execute a known sequence of fin-
ger presses as fast as possible, either from memory or 
supported by sequential cues119. However, unlike many 
natural action tasks, the movements in these paradigms 
are not only fixed, they are largely independent; that is, the  
initial state of a given movement does not depend on  
the final state of the previous movement. By contrast, 
in many real-​world tasks, individuals can choose the 
sequence of actions that they perform and each of these 
actions can be executed in different ways (with different 
kinematics or even different effectors). Thus, real-​world 
tasks involve a decision-​making process about which 
actions to perform and when and how to perform them.

In general, the efficient performance of tasks involv-
ing action sequencing requires future constituent actions 
to be considered when planning the current action. In 
principle, such ‘looking ahead’ would enable the motor 
system to better optimize costs and rewards across the 
entire task. This ability has often been examined in  
the context of ‘travelling salesperson’ problems, in which 
participants attempt to choose the shortest possible path 
that connects a fixed set of targets120. Behavioural studies 
have shown that, when given enough time, individuals 
are often capable of coming up with near-​optimal solu-
tions121,122. However, a key question is how well people 

Embodied cognition
The theory that many features 
of cognition are shaped and 
constrained by the body of the 
individual.

Wagering tasks
A set of gambling tasks used in 
psychology to assess an 
observer’s belief about the 
outcome of an event or fact.

Race model
A well-​defined model in which 
evidence for each choice 
option is accumulated 
separately. A decision is made 
either when one of the 
accumulators reaches a 
predetermined threshold or, 
when the decision is forced, 
the decision associated with 
the accumulator with the 
highest evidence is selected.
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optimize the sequencing of movement components in 
action tasks in which there are substantial movement-​
related costs, tight time restrictions and different task 
constraints and rewards.

Recent work123 has investigated decision-​making in 
a movement foraging task in which individuals could 
choose the order in which they ‘harvested’ multiple tar-
gets that varied in size, value and location across a work-
space, either by moving a hand-​held handle to targets 
(hand task) or by briefly fixating each target (eye task) 
(Fig. 5a). The short trial duration (3.25 s) meant that, in 
both tasks, participants could harvest only around half 
of the targets, placing a premium on rapid and effi-
cient decision-​making about which targets to harvest.  
The foraging data were analysed with a probabilistic 
model that was inspired by optimal foraging theory124,125, 
which predicts target-​by-target harvesting probabilities 
on the basis of the rate of reward, costs associated with 
target distance and size, and decision noise. This model 

showed that, in both tasks, participants rapidly and 
naturally selected near-​optimal harvesting paths that 
maximized reward. Whereas target value and distance 
influenced choice behaviour in both the hand and eye 
tasks, the relative influence of distance was stronger for 
the hand task. A key feature of the model was that it 
can incorporate a number of future successive harvests 
by employing temporal discounting; that is, it can ‘look 
ahead’. Using the model, it was possible for the research-
ers to determine, for each participant, the number of 
targets that they considered ahead when using the eye  
or arm (that is, the number that best accounted for their 
behaviour). Whereas eye movement decisions were 
typically made in isolation of potential future targets, 
hand-​movement decisions considered multiple future 
targets in advance (Fig. 5b), a process that presumably 
involves attending to future target locations and their 
properties126. The above findings indicate that the motor 
system can rapidly and flexibly adjust its sequencing 

Temporal discounting
The discounting of the value of 
items or rewards as a function 
of time, with their value being 
deemed greater the closer they 
approach the present time.
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decisions on the basis of the motor effectors used and 
their associated movement-​related costs (including 
biomechanical effort, movement and time). Notably, 
although it has been shown that, in navigational plan-
ning in rodents, the hippocampus generates sequences 
of neural events encoding spatial trajectories from the 
current location to the known goal location127, the neu-
ral correlates governing route planning through reach-
able space remains unknown. An exciting challenge for 
future work will be to explore how movement-​related 
costs, which are presumably computed in the motor sys-
tem84, may interface with the brain’s navigational systems 
located in the medial temporal lobe128 and ultimately be 
factored into such decision processes.

The ability to sequence behaviours intelligently is 
not only important for structuring actions but is also 
crucial for extracting the sensory information about 
the world that ultimately shapes the actions we make. 
For example, the efficient sequencing of eye movements 
when sampling the visual environment should take into 

account the information that has been garnered through 
each previous fixation. Consistent with this idea, it has 
been shown that individuals, when searching for a tar-
get location among distractors, exhibit sequential eye 
movement patterns in which each eye movement min-
imizes the uncertainty of the target location over the 
visual scene129. This active sensing strategy, which qual-
itatively approximates an optimal extraction of task-​
relevant information129, suggests that the oculomotor 
system selects, from one saccade to the next, eye move-
ments that sample sensory information in a way that  
maximizes task performance.

Whereas the goal of visual search tasks can typically 
be obtained by fixating a single location (the target), in 
many everyday tasks fixations at multiple locations are 
required to extract the information needed to accom-
plish the task goal. Tasks such as categorization often 
involve accumulating information across multiple sep-
arate fixations and integrating this information with 
prior knowledge of the stimulus being viewed. Recent 
work130 directly examined the efficiency of information 
extraction for individual fixations by employing a visual 
categorization task in which, for each fixated location, a 
small aperture of a masked image was revealed (Fig. 5c,d). 
Participants’ eye movements in this task were compared 
with those generated by a Bayes-​optimal algorithm seek-
ing to maximize, with each individual eye movement, 
information relevant to stimulus categorization (Fig. 5e,f). 
Specifically, the active sensing strategy employed by the 
algorithm involved computing, from the information 
already acquired about the scene via eye movements 
and knowledge of the statistical structure of patterns, 
the location in the scene that, when fixated, was likely 
to lead to the best reduction in categorization error. 
Notably, the authors showed that, although participants’ 
scan paths in this task were not quite optimal (~70% 
efficient compared with the Bayes-​optimal algorithm), 
their resulting discrimination accuracy was far better 
than it was when the image locations revealed were ran-
domly chosen. This result shows that the sensorimotor 
system integrates information across multiple fixated 
locations in order to select eye movements that enhance  
information extraction.

Conclusions and future directions
Interactions between decision-​making and motor con-
trol occur at multiple levels in the planning and control 
of action. In this Review, we have discussed four key 
aspects of decision-​making related to sensorimotor 
control: how the brain selects a particular movement 
when reaching toward a single target, how it represents 
and selects between competing movement goals, how 
it flexibly revises ongoing movements and movement 
goals and how it chooses sequences of movements. 
We predict three overarching challenges for the future  
of the field.

Interactions between cognitive and motor systems. 
One major challenge for future work in the field of 
motor control is to better understand how sensorimo-
tor systems interact with cognitive systems. Although 
tremendous strides have been made in recent years by 

Fig. 4 | evidence for changes of mind. a | The schematic depicts a decision-​maze task  in 
which monkeys were presented with two targets surrounded by barriers that could 
change configuration during a trial103. Neural population activity was recorded using 
96-electrode arrays in the dorsal premotor cortex and primary motor cortex. b | In switch 
trials, initially only one target was attainable, but the barrier configuration could be 
switched so as to make a second, previously unattainable target, the easiest target to 
attain. Trials in which the monkey either did not, or did, take advantage of the switch are 
shown in the left and right panels, respectively. A decoding algorithm for target choice 
(left or right) was trained using neural population activity from forced-​choice trials, in 
which only one target was attainable, and used to predict target choice in switch trials 
over time from the activity recorded during switch trial performance. The traces depict 
decoded final target choice over time for single trials in which the left or right target was 
ultimately chosen (blue traces or red traces, respectively). The red and blue dots 
superimposed on the traces indicate the time of the barrier switch. These findings not 
only show that free-​choice trials are neurally represented in a similar fashion to forced-​
choice trials but also show that, on the barrier switch trials, the neural activity would 
sometimes initially indicate one choice, before switching to the opposite choice, 
consistent with a change of mind. c | Trajectory revision in response to post-​initiation 
processing116. In this study , human subjects watched a noisy random dot display , wherein 
the direction coherence of the dots was varied, and had to indicate both the net 
direction of motion of the dots (left versus right) and how confident they were in their 
choice (high versus low) by reaching from a central location to one of four choice targets. 
Although the random dot display was extinguished on movement initiation, a small 
percentage of trials showed changes in reach paths (traces) indicative of changes  
of decision (top) or changes of confidence (bottom; only trials in which a change of 
decision/confidence are shown). d | A drift-​diffusion model can account for initial decisions, 
confidence and reaction times and changes of decisions and confidence. In this model, 
noisy momentary evidence of the direction of dot motion accumulates in two processes 
providing evidence for rightward (green trace) and leftward (red trace) motion, 
respectively. The first process to cross a decision bound determines the initial choice 
(rightward in this case; top plot). There is a correspondence between the level of the 
accumulated evidence, the elapsed time and the confidence (log odds; bottom plot) that 
a rightward decision would be correct. In the model, the boundaries between 
confidence–choice combinations can change after the initial decision (vertical dashed 
line) to capture the physical cost of altering the reach for a change of mind. In the 
example trial shown, the boundary between low and high confidence for rightward 
motion changes after the initial decision, requiring greater evidence to be accumulated 
(black trace) in favour of high confidence before the participant changes their 
confidence decision during movement, as in this example. Non-​decision time refers to 
the sum of sensory and motor delays and corresponds to the unused information that 
can be processed after commitment to an initial choice (post-​initiation processing).  
a.u., arbitrary units; DVleft, decision variable left; DVright, decision variable right. Parts a  
and b are adapted with permission from ref.103, eLife. Parts c and d are adapted with 
permission from ref.116, PLOS.

◀

Active sensing
An active strategy through 
which the body’s sensors are 
directed so as to maximally 
extract goal-​relevant 
information.
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Fig. 5 | optimized sensorimotor decisions for sequences of actions. a | The schematic depicts hand (left) and eye (right) 
foraging tasks. In these tasks, individuals choose the order in which to ‘harvest’ multiple targets, either by moving a hand-​held 
handle to targets (hand foraging task) or by briefly fixating each target (eye foraging task). In the examples shown, smaller 
targets yield higher rewards, grey targets indicate those targets that have been successfully harvested, black traces indicate 
the paths used to harvest those targets and the numbers indicate the corresponding order of harvests123. b | Histogram shows 
the number of subjects in the hand (red bars) and eye (blue bars) task for which the best-​fitting model incorporated a given 
number of look-​ahead targets. This model, applied on an individual basis, allowed an estimation of the number of targets that 
each participant considered in advance of their next movement (that is, looked ahead to) and showed that, although hand-​
movement decisions considered multiple future targets in advance, eye movement decisions were largely made in isolation 
of potential future targets. c–e | Active sensing maximizes visual discrimination130. In this task , subjects had to determine 
whether an image was patchy or stripy (part c). A gaze-​contingent display was used in which the image was initially overlaid 
by a mask. In active trials, for each fixated location, a small aperture of the image was revealed (that is, the location revealed 
was actively selected through an eye movement). In passive trials, the locations that were revealed were either randomly 
chosen (random trials) or determined by a Bayesian active sensor (BAS) model (ideal BAS trials), which determined the 
optimal (that is, most informative) location to reveal (part d). Following a number of fixations (25 are shown here), the subject 
indicated whether they thought the underlying image was patchy or stripy. Plot in part e shows, for active (red trace), passive 
(blue trace) and BAS trials (black trace), the proportion of correct choices as a function of number of locations revealed. 
Performance in active trials was superior to passive random trials but not as good as in the passive ideal BAS trials (part e).  
An observer model was able to account for the performance (lines ± shaded s.e.). f | Performance of the BAS model for a single 
trial with a stripy (S) underlying image (left panel). The maps (four right-​hand panels) show the expected ‘informativeness’ 
(BAS score) as a function of the location of the next potential fixation at different points in the trial (defined by fixation 
numbers 1, 4, 7 and 14). Histogram insets show the evolving probability assigned by the model to the two categories, which 
by saccade 14 correctly favours S rather than patchy (P). Note that although each fixation can be spatially distant from the 
optimal location, they are still high in terms of the information gain percentile. Parts a and b adapted with permission from 
ref.123, PLOS. Parts c–f are adapted with permission from ref.130, eLife.
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investigating the interaction between decision-​making 
processes and motor control, other interactions — 
for example, between memory systems and motor  
control — remain rich areas for future investigation. 
Recent work on motor learning, for example, has 
emphasized the role of explicit or cognitive strategies 
in adapting to visuomotor rotations131–133; however, 
our current understanding of how different memory 
systems support the planning and control of action 
tasks remains quite limited. Real-​world action tasks, 
such as making tea or cooking a meal, involve inter-
acting with multiple objects in our environment, 
which are lifted, moved about in space and then lifted 
again. Such tasks involve declarative memories about 
object properties, spatial memories about object loca-
tions and episodic memories about dynamic changes 
in the environment that are brought about through 
action. Thus, a full understanding of the planning 
and control of such tasks will require elucidating 
how these different memory systems interact with  
sensorimotor processes.

Decision-​making in real-​world situations. We now 
have a detailed understanding of the interaction 
between decision-​making and motor control in a nar-
row range of tasks. Although these tasks are amenable 
to analysis and modelling, they do not capture the full 
complexity of real-​world decision-​making in the con-
text of action. In our daily lives, we have to make high-​
level decisions about which tasks to perform and, at 
an even higher level, which tasks to learn. In terms of 
the latter, we frequently make decisions about whether 
to invest in learning a new skill, ranging from trying 
out a new tennis grip to learning to speak a new lan-
guage. Such decisions are based on an estimation of 
the time and effort involved, the motor skill level we 
will eventually attain, the success we will have and the 
expected payoff that such learning will provide. Such 
decisions presumably require some knowledge of the 
capacity and constraints of our own motor systems 
and a prediction of future performance. However, it 
remains poorly understood how such factors influence 
decision-​making processes at this higher level.

From computational mechanisms to neuronal imple-
mentation. Although substantial progress has been 
made in understanding the computational mechanisms 
underlying decision formation (such as the integration 
of sensory evidence leading to a decision) and how 
these correlate with and are causally related to neuronal 
responses in multiple brain regions94,100,134–138, we still have 
a fairly sparse view of the whole-​brain neural circuits 
underlying decision-​making related to sensorimotor 
control. Recent work in human neuroimaging, although 
lacking the spatial and temporal resolution of neuronal 
recording techniques, has begun making some inroads 
into understanding how, at the whole-​brain level, sen-
sorimotor and cognitive networks in the brain interact 
and together contribute to the planning and control of 
action tasks139–142. However, in comparison to the neuro-
imaging areas of perception, memory and language143–148, 
this is a relatively poorly investigated topic — a gap due, 
in part, to the inherent challenges and difficulties in 
studying motor behaviour in the MRI scanner environ-
ment (such as motion-​related artefacts in MRI signal 
and limited workspace). Developments in this particular 
research area may help reveal how decision-​related com-
putations are instantiated across distributed brain areas, 
which will provide future sites for neuronal recordings in 
nonhuman primates as well as important constraints for  
biologically plausible computational theories.

In summary, over the past decade, there has been 
considerable progress in our understanding of the bidi-
rectional interplay between decision-​making and sensori-
motor control. The exciting challenges ahead lie in better 
understanding decision-​making as an evolving and con-
tinuous process that adjusts and refines ongoing actions 
as well as the neuronal implementation of this process. 
The success of this more integrated approach to studying 
the relationship between cognition and motor behaviour 
will be measured by how well models are able to explain 
more naturalistic behavioural tasks, to explain deficits 
observed in neurological or behavioural disorders and to 
inform the development of more complex robotics and 
recovery-​of-function options for individuals.
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