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SUMMARY

We have studied the learning processes of reaching
movements under novel environments whose kinematic
and dynamic properties are altered. In the experiments, we
have used, as the kinematic transformation, a rotational
transformation which is displayed by rotating a cursor
indicating hand position in the orthogonal coordinate sys-
tem on a CRT; a viscous transformation using viscous field
as the dynamic transformation; and a combined transforma-
tion of these two transformations. It is observed that the
hand trajectory approaches a straight line along with learn-
ing and accurately reaches the target. When the combined
transformation is learned after the rotational transformation

and viscous transformation are learned first, respectively,
the final error becomes smaller and the path length also
becomes shorter than the case when the combined transfor-
mation is learned first. Moreover, the final error and path
length of the movement under rotational transformation and
viscous transformation when the combined transformation
is learned first also become smaller than the case when the
rotational and viscous transformations are learned first.
These results suggest that the central nervous system has
learned separately the multiple internal models which com-
pensate the respective transformations, and has composed
or decomposed the respective internal models in accord-
ance with the environmental changes. It may be considered
that such multiplicity of internal models makes it possible
for the living body to flexibly cope with the environments
or tools having various dynamic and kinematic properties.
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1. Introduction

Humans acquire adaptive behaviors for various
changes of tools and environments, and can quickly cope
with the changeover of the environments and tools after
acquisition. In such adaptive process, the central nervous
system (CNS) has learned to make smaller the error be-
tween the movement targeted and the movement realized.
At this time, to accurately achieve the given target in
external space, it is thought that the CNS has learned to
generate appropriate series of movement commands in the
physical space by using the internal models for the proper-
ties of the controlled system and environment [1–3].

The movement commands depend not only on the
kinematic quantities [4] such as the length and position of
the physical structure system and the posture in the polar
coordinate system of the shoulder or the dynamic quantities
[5] related to forces such as mass or moment of inertia and
viscosity/elasticity, but also on the kinematics of tools and
environments, for example, the tool shapes or the relation-
ship between positions of limbs in the visual coordinate
system and working coordinate system or the dynamics, for
example, the mass or moment of inertia of tools and the
external force in the water or environment without gravity.
Therefore, when these properties change, the movement
commands required for carrying out the objective move-
ment will also change. To achieve the objective movement,
the CNS must be capable of generating the series of move-
ment commands, respectively, in accordance with the vari-
ous kinematic properties or dynamic properties which the
tools and environments possess.

If the internal model only generates an appropriate
movement command, it must be learned anew every time
the property of the tool and environment is altered. There-
fore, even if there is an experience that the altered property
has been learned before, the initial error or the time used in
learning always becomes close whenever it corresponds to
a novel property. However, if the internal models have
learned separately different properties by multiple mod-
ules, it is not necessary to learn the already-learned property
again. This kind of learning method is called the modular
scheme. The CNS has the following advantages in adapting
this scheme. The initial error becomes smaller and the time
used in readaptation also becomes shorter by using the
low-level module which has learned the property in accord-
ance with the alternation of the property. Moreover, by
various combinations of multiple low-level modules, con-
siderable numbers of kinds of tools and environments can
be dealt with. Recently, the proposed multiple internal
models consider the mechanism of control and learning
based on such modular scheme [6–8]. 

In the conventional researches, the kinematic proper-
ties [9–14] or dynamic properties [15–18] of the environ-

ments are altered experimentally, and the adaptive proc-
esses to the altered environments have been investigated
through movement learning tasks. It is thought that the
adaptive mechanism reported in these researches suggests
that in addition to the internal models of the arms which
have already been acquired in the developmental process,
the internal models of the altered environments have been
prepared separately. Moreover, it has been reported that the
complicated visual movement task is decomposed into
simpler elements in the brain and they are respectively
learned by multiple modules [14]. Furthermore, Imamizu
and colleagues have shown that the learnings of the kine-
matic properties which were altered by different rules are
coped by different cerebellum parts. However, there have
been no studies on whether or not the internal models,
respectively corresponding to the kinematic properties and
dynamic properties, are prepared separately. If they were
prepared separately, would the internal models for the
respective properties be combined, or would a separate
internal model learn the alternations of both properties
together?

We have regarded the environment in which the kine-
matics only is altered and the environment in which the
dynamics only is altered as the environments having differ-
ent internal models. We have set a rotational transformation
as the alternation of the former and a viscous transformation
using a viscous field as the alternation of the latter. These
two transformations will be called the “single transforma-
tion.” With respect to this, the transformation using both
rotational transformation and viscous transformation si-
multaneously will be called the “combined transforma-
tion.” The details of the rules of these transformations will
be described later. If the CNS has learned by the multiple
internal models the movements under the transformations,
the following can be predicted. If the rotational transforma-
tion and viscous transformation are learned by separate
internal models as the elements of the combined transfor-
mation, the learning of the combined transformation may
probably be promoted by learning the rotational transfor-
mation and viscous transformation beforehand. Con-
versely, after the combined transformation is learned, the
tasks under rotational transformation and viscous transfor-
mation may probably be executed relatively easily. 

To verify these predictions, the following two experi-
ments are performed on separate days using the same
subject. In one experiment, the combined transformation
task is performed after the single transformation is experi-
enced (Fig. 1A). In this case, the CNS may have generated
the movement commands for executing the combined
transformation task by composing the internal models cor-
responding to the respective single transformations. There-
fore, this experiment is referred to as the composition
experiment. In another experiment, the single transforma-
tion tasks are performed after the combined transformation
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is experienced (Fig. 1B). In this case, the internal models
corresponding to the rotational transformation and viscous
transformation prepared simultaneously in the combined
transformation may probably be divided and used sepa-
rately in the single transformations. Therefore, this experi-
ment is called the decomposition experiment. In order to
look into the effect of the preceding learning on the later
learning, it is necessary that the internal model about the
transformation which experiences first in each experiment
is not acquired. In these experiments, between the transfor-
mations whose positive and negative signs of rotational
angles or whose positive and negative signs of viscous
terms are mutually different, it is assumed that the learning
of transformations will not transfer. Accordingly, the trans-
formations whose signs are mutually different are adopted
between the composition experiment and the decomposi-
tion experiment. In this paper, the rotational transformation,
viscous transformation, and combined transformation are
denoted by R, B, and R+B, respectively. R′, B′, R′+B′ show
the transformation having symbols different from R, B,
R+B (Fig. 1). Based on the earlier assumption, the learnings
of R and R′, B and B′, as well as R+B and R′+B′ are
regarded as mutually equivalent in the degree of difficulty
and the time constant of learning curve. 

We have performed the following comparisons using
the data obtained in the composition and decomposition
experiments. The data measured under combined transfor-
mation are compared before (R′+B′) and after (R+B) learn-
ing the single transformation; moreover, the data under the
single transformation are compared before (R or B) and

after (R′ or B′) learning the combined transformation (see
Fig. 1). At the time of learning the novel transformation, the
error is large initially but the learning curve is probably
observed, in which the errors decrease exponentially as the
trials advance (for example, the second and third ones from
the left in Fig. 1A). After the transformation has already
been learned, the error of the reaching movement becomes
smaller than that before learning, and the rate of decrease
of the errors accompanying the trials may also be small (for
example, the right end of Fig. 1A). 

In the design of the experiments, the transformation
task, in which it is predicted that the error of reaching
movement will became smaller, is always performed last in
the experiment. Therefore, even if a result which agrees
with the prediction has been obtained, there is a possibility
that not only the promotional effect of learning by the same
kind of transformation is learned beforehand but also the
simple effect of order which is not related to the type of
transformation are included. Accordingly, we have investi-
gated whether or not the difference in the errors of reaching
movements depends only on the order of tasks. If the error
in the case of the order which is always behind is signifi-
cantly small, it is possible that the effect of order has
influenced the learning effect.

Moreover, in order to investigate the effect of experi-
mental days, namely, whether or not the transformation
learning performed on the first day will transfer to the
learning of the second day, the experimenter himself learns
preliminarily the single transformation on the first day and
then the single transformation task is performed again by

Fig. 1. Order of transformation tasks in the (A) composition and (B) decomposition experiments. N, R and R′, B and B′,
and R+B and R′+B′ denote normal, rotational, viscous, and combined transformations. The thick lines denote error 

levels in reaching movements as a function of the number of trial sets. Ten trials were included in a set. 
The dashed lines indicate error levels in the early stage of learning.
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changing the sign of the transformation one week later. If
the error of the reaching movement of the second day is
always significantly smaller than that of the first day, there
is a possibility that the experience of the first-day experi-
ment has promoted the learning of the transformation task
of the second day. This phenomenon is called positive
transfer. Conversely, if the error of the second day is larger
than the first day, there is a possibility that the experience
of the first-day experiment has hindered the learning of the
task of the second day. This phenomenon is called negative
transfer. 

2. Experiments 

2.1. Method

2.1.1. Experimental equipment and
procedures

Eight subjects (21 to 35 years old; six males and two
females) sit on chairs; with the right arm supported by a
strap suspended from the ceiling, the right hand grasps the
tip of a two-link manipulandum (PFM : Parallel-link air-
magnet Floating direct-drive Manipulandum) and the vis-
ual reaching movement task is executed on a horizontal
plane.* The wrist is fixed by a brace. The position of the
hand is measured by the PFM, and its present position (a
cursor of diameter 0.4 cm) and the target (a circle of
diameter 1 cm) are displayed on a CRT screen installed in
front of the subject. The scales of the CRT coordinate
system and the working coordinate system of the hand are
the same. The distance between CRT and subject is about
1.6 m. The sampling frequency is 500 Hz. Since the arms
of the subject are hidden by a shielding plate, they perform
the movements by looking at the screen only. 

To get used to the experimental environment and task,
all subjects have participated in training tasks to make the
cursor reach the target in the space which has no transfor-
mations beforehand. This task is called the no-transforma-
tion task (normal). Before the experiment starts, the types
of transformation are briefly explained to the subjects, and
it is determined in such a way that the cursor expressing the
hand will be put into the circle which is the target as
accurately as possible with a short distance, within the
duration (600 ms) of target presentation. The task is per-
formed within a circle of radius 14 cm shown on the screen.
For the purpose of making the movement distance constant,
the target coordinates are selected randomly from the point
on a circle of radius 10 cm with the final position of the
previous trial as center. The times from the presentation of

the previous target to the presentation of the next target are
4000 ms for subjects RB, AO, NY, HM and 1400 ms for
subjects CY, SN, TT, KH. Since the target is presented
randomly with a short-time interval, it is difficult during the
execution of the task under transformation for the subject
to perform the movement by recognized transformation
without learning the transformation. 

Ten trials are regarded as one set for the task, and 30
or 50 sets are performed for one session. At the first trial of
each set, the cursor is always returned to the same position
(center of the circle of radius 14 cm). The transformation is
always imposed during the session of the transformation
tasks. A short recess is inserted between sessions. 

In the composition and decomposition experiments
(Fig. 1), 10 sets of no-transformation tasks are inserted after
the end of the session of the respective transformation tasks.
All subjects perform these two kinds of experiments with
an opening of an interval of over 1 week. Following the
procedures of performing the experiments, the eight sub-
jects are divided into two groups: C-D or D-C. Subjects RB,
AO, SN, CY belonging to the C-D group perform the
composition experiment on the first day and the decompo-
sition experiment on the second day. Subjects NY, HM, TT,
KH belonging to the D-C group perform the experiments
in reversed order. The experimental conditions for the re-
spective subjects are summarized in Table 1. 

2.1.2. Rules of transformations 

In the rotational transformation, the position (p, q) of
the hand in the orthogonal coordinate system of the subject
is rotated on the CRT screen and displayed on screen as a

*However, among the eight subjects, the arms of four subjects (CY, SN,
TT, KH) are supported by supporting rods installed at the manipulandum.

Table 1. Experimental condition of each subject
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cursor (x, y) (Fig. 2). R is a constant matrix expressing the
rotational movement. 

If the hand is moved in the same way as the case of
no transformation without learning this rotational transfor-
mation, the distance between target and cursor will became
large on the screen. The rotational angles used in the trans-
formation are +60° (Fig. 2A) and –60° (Fig. 2B). The
transformations based on these rotational angles are ex-
pressed by R+ and R–, respectively. 

In the viscous transformation, the hand of the subject
is generated with the following forces (fx, fy) by PFM during
task execution (upper sides in A and B of Fig. 3).* If the
hand is to be made reaching the target directly as in the case
of no transformation, the path of the hand will bend due to
the influence of this force field, and so the length will
become longer than the straight-line path:

This force is calculated proportional to the velocity
of the hand. B is a second-order square matrix expressing
the viscous coefficients. The viscous field used in this
experiment is the same kind of rotational force field used
by Shadmehr and Mussa-Ivaldi [15]. We have used two
kinds of force fields—B+ (lower side in A of Fig. 3) and B–

(lower side in B of Fig. 3)—in which the positive and
negative signs of the diagonal components of B are mutu-
ally different. All of the subjects are inexperienced for this
kind of transformation task. 

2.2. Analyses

2.2.1. Filtering

The position data are smoothed by a fourth-order
Butterworth filter with a cutoff frequency 20 Hz. The
differential values of the position data are calculated ana-
lytically by estimating a second-order equation passing
through three points. The starting time point and ending
time point of the respective movements are determined by
using the curvature [13]. The threshold value of the curva-

ture is 3 mm–1. Among the 10 trials contained in each set,
the first trial is excluded from the analysis. 

The errors of the reaching movements are calculated
by using the measured position data of the hand. In the case
of rotational transformation, the data of rotational transfor-
mation of the measured positions are used in order to realize
the positions displayed on the screen during experiments. 

First, the distance between the hand position and the
target position at the ending point of the movement decided
by the curvature is determined. This distance will be called
the target error. When the rules of the rotational transfor-
mation are learned, the hand will accurately reach the target
and the target error will become smaller [12]. Moreover, we
have calculated the length of the path along which the hand
has moved during one trial. This length will be called the
path length. The viscous force field will influence the hand
path as a way of bending it. However, the hand will com-
pensate this influence and it will reach the target directly
accompanying the learning, and the path length will be-
come shorter [15]. Since the values of the target error and
path length will decrease accompanying the learning, they
can be regarded as the indices of learning (Fig. 4). In this
paper, to express the progress of learning from now on, the
fact that these values are small or large will be represented
as: the error level is low or high. Namely, if the error level
is high, it is regarded as not learned, and if the error level is
low, it is regarded as learned.

Fig. 2. Rule for rotational transformations. A cursor
indicating the hand position was projected onto a CRT

screen with constant rotation.

*In the viscous transformation and combined transformation, subjects RB,
AO, NY, HM have experienced the following viscous field which is
somewhat smaller than the value of the diagonal components of the other
subjects.

      B+ = 




+12    −13

−13    −12



  B− = 





−12    −13

−13    +12
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2.2.2. Dispersion analysis

We have investigated the effect of the experiment
performed on the first day on the experimental result of the
second day; the effect of the previous transformation learn-

ing on the later transformation learning; and the learning
effect due to the repeated practice learnings. Then, by using
the values of the target errors and path lengths, we have
performed the dispersion analyses of the three factors of
experimental days (the first day and second day), transfor-
mations (no transformation, rotational transformation, vis-
cous transformation, and combined transformation), and
number of sets (1 to 30). Here, in accordance with the
number of trials of no-transformation tasks, the data from
the 1st set to the 30th are used. 

Next, as to the effect of order, the dispersion analysis
of one factor is performed by using the data of all subjects.
In the composition experiment, order 1 contains the data of
no transformation only, orders 2 and 3 contain the data of
rotational transformation and viscous transformation, and
order 4 contains the data of combined transformation only.
In the decomposition experiment, order 1 contains the data
of no transformation only, order 2 contains the data of
combined transformation only, and orders 3 and 4 contain
the data of rotational transformation and viscous transfor-
mation (see Table 1). The types and numbers of the trans-
formations contained in orders 2 and 3 in the composition
experiment are the same; and those contained in orders 3
and 4 in the decomposition experiment are the same. There-

Fig. 3. Rule for viscous transformations. External forces perturbed the hand (p,q) in proportion to the hand velocity. The
upper sides in A and B are examples of forces that acted on the hand during reaching movements. These forces were

predicted using minimum jerk trajectories (movement distance: 10 cm, movement duration: 500 ms) 
according to Flash and Hogan [20]. The lower sides in A and B show force fields. These 

figures are based on force data predicted by each viscosity, B+ or B–.

Fig. 4. Indices of learning. The target error was
calculated as the distance between the final hand
 position after movement and the target position.

The path length was the length from the 
initial to final hand position.
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fore, here, orders 2 and 3 or orders 3 and 4 are compared in
pair by t examination, respectively. 

As to the preliminary experiment investigating the
effect of the experimental days, the respective single trans-
formations of the first day and the corresponding single
transformations of the second day are compared in pair by
t examination. The Bonferroni–Dun method is used in all
examinations of significant errors. 

2.2.3. Modeling by exponential function 

The data of target errors or path lengths are averaged
for every set in each session. Based on the prediction
derived from the hypothesis of multiple internal models
described in the Introduction of this paper, the following
analyses are performed. Since the combined transformation
task of the composition experiment (Fig. 5A right, Compo-

sition R+B) is performed after 50 sets of the same transfor-
mation have been learned by the single transformation task
(Fig. 5A left, Composition R or B), it can be considered to
start from the 51st set. On the other hand, the combined
transformation of the decomposition experiment (Fig. 5A
right, Decomposition R′+B′ ) has been learned as the first
50 sets and the single transformation (Fig. 5A left, Decom-
position R′ or B′) performed next may be considered to start
from the 51st set. As to the relationship between the number
of trials and the change of error level, the data (1 to 50 sets)
obtained in the single transformation of the composition
experiment and the data (regarded as 51 to 100 sets) of the
decomposition experiment are joined and regarded as the
successive data (Fig. 5A left). In reality, the data of the
first-half 50 sets and the data of the second-half 50 sets
originate from the tasks under the transformations of differ-
ent signs, respectively. Since the second-half data are the
data measured after learning the transformations with the
same signs, their initial values and rates of decrease must
be lower than those of the first-half data which have not
been learned beforehand. Therefore, the error level of the
successive data may drop exponentially relatively
smoothly. The same can be said for the combined transfor-
mation of the composition experiment and that of decom-
position experiment (Fig. 5A right). However, when the
data themselves of the single transformations of the decom-
position experiment and composition experiment (Fig. 5B
left) or the combined transformations of the composition
experiment and decomposition experiment (Fig. 5B right)
are joined, they may not became successive. These data will
be called the inverted data. As to the no transformation, the
data of joining the first day and second day are regarded as
the successive data and the data of joining the second day
and first day are regarded as the inverted data. 

First, we have modeled the first-half 30 or 50 sets of
the successive data and inverted data by

n is each set and ki is a coefficient. Vmodel expresses the value
of target error or path length predicted by Eq. (1). For the
respective transformation tasks, in order to investigate how
much the second half of the data joined by the exponential
model obtained here can be explained, the predicted value
of the model Vmodel and the absolute error of the successive
data or inverted data Vdata are calculated for the second half
of the joined data:

By using t examination, the significant difference between
the mean absolute errors obtained from the successive data
and inverted data are investigated. 

Fig. 5. “Modeling by exponential” of data for mean
target errors and mean path lengths. R, B, and R+B

denote rotational, viscous, and combined
transformations, respectively. R′, B′, and R′+B′ show that
the positive and negative signs of transformations in the

decomposition experiment are different from those in the
composition experiment. The successive (A) or inverted
data (B) consist of the sequences of trial sets enclosed by
a dashed line. The first half of the joined data is modeled
exponentially. The black solid lines show the relationship

between the joined data and the model prediction.

(1)

(2)

86



3. Results 

For the composition experiment and decomposition
experiment, Fig. 6 shows the examples of the hand paths of
the early stage and later stage of learning of the respective
transformations (from the data of subject RB). In the no-
transformation tasks, the hand paths are straight lines and
the target errors are also smaller for both. In the early stage
of learning of the composition experiment (Fig. 6A), the
hand has moved to a direction completely different from
the target in the rotational transformation task (R+) , and the
hand has shown a trend of deviating from the target near the
target in the viscous transformation task (B–). However, in
the combined transformation task (R+ + B–) in which the
single transformation has been learned, the deviation from
the target of the hand is relatively smaller compared to the
above-mentioned two transformation tasks. In the early
stage of learning of the decomposition experiment (Fig.

6B), the hand has moved to a direction completely different
from the target in the combined transformation task (R– +
B+); however, in the rotational transformation task (R–) and
viscous transformation task (B+) after learning the com-
bined transformation, the deviation from the target of the
hand is small. In either case, the hand has reached the target
almost directly in the later stage of learning similar to the
no-transformation task.

 3.1. Effect of previous transformation
learning on later learning

As a result of dispersion analyses, for the target error,
except the main effect of day and the interaction between
day and transformation of subject CY as well as the main
effects of day of subjects HM and TT, all main effects of
day, transformation, and number of sets as well as the
interaction between day and transformation are obtained (p

Fig. 6. Hand paths measured under each transformation. This figure shows hand paths in the early stage of learning (1st
set) and in the late stage of learning (30th set) of the composition experiment (A) as well as in the early stage of learning (1st

set) and in the late stage of learning (30th set) of the decomposition experiment (B). Each path from left to right is derived
from data obtained under a normal, rotational, viscous, or combined transformation denoted by N, R+ and R–, B– and B+, or
R + B+ and R+ + B–, respectively. Black and gray lines indicate paths in the early and late stage of learning, respectively. X
and O denote the initial position of the hand and the target position. The origin of this figure is the center of a circle with a

radius of 14 cm on a CRT screen where the tasks were performed. The data are from subject RB.
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< 0.05). For the path length, except the main effect of day
of subjects AO and KH and the interaction between day and
transformation of subject KH, all main effects of day,
transformation, and number of sets as well as the interaction
between day and transformation are obtained (p < 0.05).
For the two indices of target error and path length, the
combined transformations themselves or the single trans-
formation themselves of composition experiment and de-
composition experiment are compared in pair. In the pair
comparison, the data of seven subjects excluding CY in the
target error and seven subjects excluding KH in the path
length, whose interaction between day and transformation
has been seen, are used. As a result, for the comparison of
33 pieces (21 with significant difference) among 42 pieces
(7 subjects × 3 types of transformations × 2 indices), the
error level of decomposition experiment is lower for single
transformation and the error level of composition experi-
ment is lower for combined transformation (left in upper
row of Table 2). Conversely, for the comparison of 9(5)
pieces, the error level of composition experiment is lower
for single transformation and the error level of decomposi-
tion experiment is lower for combined transformation (left
in lower raw of Table 2). 

From the data of subject RB, the relationships of the
number of trials with the successive data and inverted data
are shown in Fig. 7. In the case of this subject, almost all
successive data decrease exponentially relatively smoothly
accompanying the number of trials, and the absolute error
with the exponential model is also small. From the early
stage to the later stage of learning (1 to 50 or 51 to 100 sets)
in the respective sessions of transformation tasks, the mean
target error for every set has decreased (Fig. 7A upper) and
the mean path length has became shorter (Fig. 7A lower).
The error level of no-transformation task is low throughout
all trials and is almost the same as the error level of the later

stage of learning of the respective transformation tasks. On
the other hand, particularly for the rotational and combined
transformations, the inverted data are not smooth and the
absolute error with the exponential model is large (Fig. 7B).
Table 3 summarizes the results of the t examinations of the
significant differences of the mean absolute errors between
the successive data and the prediction by model and be-
tween the inverted data and the prediction by model. For
the comparison of 33 pieces (16 with significant difference)
among 48 pieces (8 subjects × 3 types of transformations ×
2 indices), the mean absolute error between the successive
data and the prediction by model is smaller (upper row, right
of Table 2); and for the comparison of 15(6) pieces, the
mean absolute error between the inverted data and the
prediction by model is smaller (lower row, right of Table 2).

3.2. Effect of order 

As a result of dispersion analyses, the main effects of
the order have been obtained [target error: F(df) =
231.87(7), p < 0.0001 ; path length: F(df) = 185.74(7), p <
0.0001]. In the decomposition experiment, the target error
of order 4 is significantly larger than that of order 3 (p <
0.0001). In the composition experiment, the target error of
order 3 is significantly larger than that of order 2 (p <
0.0001). In both experiments, there is no significant differ-
ence between orders for the path length. 

3.3. Effect of experimental day 

As to the target error, there is no significant difference
between the first and second day for all transformations. As
to the path length, the second day is significantly longer for
all transformations (p < 0.0001). 

Table 2. The number of subjects whose results support or do not support the multiple internal model hypothesis for an
ANOVA and exponential modeling
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Fig. 7. Relationship between the number of trial sets and (A) successive data or (B) inverted data for mean target errors 
(A and B, upper) and mean path lengths (A and B, lower). N, R and R′, B and B′, and R+B and R′+B′ denote normal,

rotational, viscous, and combined transformations, respectively. R, B, and R+B represent transformations in the 
composition experiment, and R′, B′, and R′+B′ show those in the decomposition experiment (cf. Fig. 5). 

The error bars and thick lines indicate the standard errors and the exponential model predictions. 
The correlation coefficients r between the first half of the successive or inverted data and the 
model predictions are shown in the upper left of each panel. The data are from subject RB.
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4. Discussion

In this research, the environment in which the CNS
has altered the kinematic property and the environment in
which it has altered the dynamic property are learned by
separate internal models, respectively, and their outputs are
combined to generate optimal movement commands. The
experiments for verifying the hypothesis of multiple inter-
nal models are performed. It has been reported by noninva-
sive measurement using fMRI [19] that after learning
different kinematic transformations, nervous activities have
been observed in different parts of the cerebellum corre-
sponding to the respective transformations. This report
suggests that different internal models have been used for
the different kinematic transformations. Therefore, for the
kinematic transformation and dynamic transformation used
in the experiments, namely, for the rotational transforma-
tion and viscous transformation, it may be considered that
different internal models have also learned the respective
transformations. If the model for a certain transformation
has already been acquired, the adaptation to the situation of
performing the movement under the same transformation
may be faster. 

4.1. Result of supporting hypothesis 

If the rotational transformation, viscous transforma-
tion, and combined transformation are all learned by differ-
ent internal models or by the same one model, their error
levels must be similar regardless of the order of learning the
transformation. However, over 80% of the results of disper-
sion analyses have shown that after learning the single (or
combined) transformation first, the error level of target
error or path length in the task under combined (or single)
transformation is generally low throughout the session.
Moreover, less than 70% of the mean absolute error be-
tween the successive data and the exponential model is
higher than that of the inverted data. Namely, the exponen-
tial model for the first half of the successive data has
predicted the second half of the data relatively well. Taking
the successive data of the rotational transformation task in
Fig. 7A as an example, the error level in the early stage of
learning drops by learning the combined transformation
beforehand and for that reason, the data are joined, rela-
tively smoothly, with the data of the later stage of learning
of the task performed without experiencing the combined
transformation. Moreover, within each experiment, since
the result that the error level is lower for the task whose
order is behind, it is good enough to consider that it is not
the reason that the error level of transformation learning
performed later by the effect of order only has dropped.
Namely, the possibility of the simple effect of order which
is not related to the type of transformation is rejected. 

Moreover, if the results of supporting the hypothesis
are obtained in the single transformation of C-D group in
which the composition experiment is performed first and in
the combined transformation only of D-C group in the
decomposition experiment is performed first, there is a
possibility that the experience of the first-day experiment
has made the execution of the second-day experiment eas-
ier. Conversely, if the results of supporting the hypothesis
are obtained in the combined transformation of C-D group
and the single transformation only of D-C group, there is a
possibility that the experience of the first-day experiment
has hindered the learning in the second-day experiment.
However, in both transformation learnings in both groups,
the results that over half have supported the hypothesis are
obtained (see Table 2). Furthermore, in the preliminary
experiment in which the effect of experimental days is
studied, a negative transfer has been seen only for the path
length between the first- and the second-day experiment;
however, the positive transfer is not seen. Therefore, it
cannot be said that the effect of experimental days has
necessarily influenced the results. 

From these results, the possibility that the three types
of transformations adopted in the experiments will be
learned by three types of internal models, respectively, as
well as the possibility that the single internal model will
learn on all such occasions are rejected. Therefore, in the
composition experiment, the internal models correspond-
ing to the respective viscous transformation and rotational
transformation are prepared, and both of them may be used
in the combined transformation task. Moreover, in the
decomposition experiment, the internal model correspond-
ing to the rotational transformation and the internal model
corresponding to the viscous transformation are acquired
simultaneously under the combined transformation and the
internal model corresponding to the same transformation
may be used separately under the single transformation
task. 

4.2. Result of not supporting hypothesis 

On the other hand, a little under 20% of the result in
the dispersion analyses and a little over 30% of the result in
the modeling by exponential function have not supported
the hypothesis (see Table 2). As to the reason for this result,
the fact that the scheme adopted by the subject differs
depending on the day, the interference by the first-day
experience (negative transfer), and the hesitation about the
inexperienced environment may be considered. 

For the rotational transformation, the subject cannot
accurately reach the target if he does not learn the rules of
transformation. Subject SN has reported that he felt that the
execution is more difficult in the initial stage of the task
because the second-day learning is interfered with by the
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first-day learning. For subject CY, the target error after
combined transformation learning is smaller than that be-
fore learning, although the absolute error of the successive
data is larger than that of the inverted data. The result for
the exponential model is one among four which have not
supported the hypothesis (see Table 2). Since the subject
has known the type of transformation by teaching, there is
a possibility that he has the attitude of ready to use the
internal model acquired in the first day. In that case, since
the sign of the rotation is the opposite, its internal model
has an error of 120° appearing between the predicted posi-
tion and the hand position present on CRT. Therefore, the
target error becomes larger than the first day temporarily.
However, according to the multiple internal models [6], the
gain of the learning for the model which presented a large
error becomes smaller in such a way that the representation
of the internal model which has already been acquired will
not be altered, and the different internal models start to
learn. If this idea is correct, the results of these subjects,
which are inconsistent at a glance, can be interpreted as
follows. Although the opposite-sign transformation is
learned anew in the second-day combined transformation,
since the first-day internal model is activated again in the
next rotational transformation and the initial value of the
error becomes larger, it has immediately changed over to
the internal model acquired immediately before to reduce
the error. Moreover, the negative transfer has been observed
not only in the data of subject CY but also in the preliminary
experiment on the effect of experimental days. If the afore-
mentioned interpretation on the negative transfer is correct,
it may show that the transformations whose signs are dif-
ferent may be learned by the different internal models.
However, this hypothesis does not explain the mechanism
itself that the internal model acquired the last time is acti-
vated by mistake and the negative transfer occurs.

For the viscous transformation, the subject does not
necessarily learn the rules of learning and can achieve the
task by commonly exciting the arm muscles to generate,
using the viscous field, the force for resisting the distur-
bance. In the viscous transformation, subjects AO and SN
belonging to C-D group showing the results of 8 pieces
among 15 pieces (see Table 3) which do not support the
hypothesis have experienced the viscous transformation on
the beginning of the first day. Since they are unfamiliar with
both the transformation and experimental condition, they
are strained and achieved the task with arm stiffened. As a
result, there is a possibility that the error level has dropped
generally. Therefore, even if the error level has dropped due
to the quickening of the learning effect of the combined
transformation in the decomposition experiment of the
second day, it is possible that the difference between both
days cannot be obtained statistically. There is a possibility
that the four subjects (seven pieces) belonging to D-C group
in which the error level is low on both days may have also

taken the scheme of common excitation; however, it may
not be due to the stiffness because they have experienced
the combined transformation earlier than the viscous trans-
formation. 

For the combined transformation, the results which
do not support the hypothesis are five pieces. Among them,
four pieces shown by subjects HM and TT belonging to D-C
group are all the results for the path length. All of them have
experienced the combined transformation on the beginning
of the first day. Since the most difficult transformation task
has been performed first, the scheme is adopted that the
hand will not be moved too much because of stiffness, and
so it is possible that the results of large target error and short
path length are obtained. 

5. Conclusions

In the preceding research, it has been reported that
after a certain transformation task is learned, the next learn-
ing is interfered with depending on the time at which the
next different transformation task is performed [16]. In the
experiments, since the interval time between the respective
transformation tasks is too short, there is also a possibility

Table 3. Mean absolute errors between joined data and
exponential model
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that the learning has been interfered with depending on the
subjects. It may be necessary that the time between tasks
must be controlled in the future. 

However, we are able to explain more than 90% of
the results of the experiments by the multiple internal
models or the interpretation which does not confront them.
Namely, the following two possibilities have been sug-
gested. The internal model for kinematic transformation
and the internal model for dynamic transformation have
been learned separately as the elements of the combined
transformation. In the single (or combined) transformation
performed after learning the combined (or single) transfor-
mation, it is not the case that separate internal models are
prepared anew but rather the internal model acquired in the
previous transformation learning is utilized. Therefore, the
CNS has learned separately the multiple internal models
which compensate the respective transformations, and
composed or decomposed the respective’ internal models
in accordance with the change of the environment. 

Acknowledgment. A portion of this research was
performed as part of the “Research on communication of
primates including humans,” based on the 1999-FY Adjust-
ment Fund for Science and Technology Promotion of the
Science and Technology Agency, and moreover, it has
received the assistance of HFSP. 

REFERENCES

1. Kawato M, Furukawa K, Suzuki R. A hierarchical
neural network model for the control and learning of
voluntary movements. Biol Cybern 1987;56:1–17.

2. Kawato M. Computational theory of brain. Sangyo-
tosho; 1996.

3. Kawato M. Internal model of cerebellum exterior—
computational engine of human intelligence: Imagi-
nation, communication, language, thinking and
consciousness. Separate Volume, Mathematical Sci-
ence, p 194–208, 1997.

4. Lacquaniti F, Guigon E, Bianchi L, Ferraina S,
Caminiti R. Representing spatial information for
limb movement: Role of area 5 in the monkey. Cere-
bral Cortex 1995;5:391–409.

5. Kalaska JF, Cohen AD, Hyde ML, Prud’homme M.
A comparison of movement direction-related versus
load direction-related activity in primate motor cor-
tex, using a two-dimensional reaching task, J Neurosc
1989;9:2080–2102.

6. Kawato M, Wolpert DM. Internal models for motor
control. In Glickstein M (editor). Sensory guidance
of movement. John Wiley & Sons; 1998. p 291–307.

7. Wolpert DM, Kawato M. Multiple paired forward
and inverse models for motor control. Neural Net-
works 1998;11:1317–1329.

8. Wolpert DM, Miall RC, Kawato M. Internal models
in the cerebellum. Trends Cogn Sci 1998;2:338–347.

9. MacGonigle BO, Flook JP. Long-term retention of
single and multistate prismatic adaptation by hu-
mans. Nature 1978;272: 364–366.

10. Welch RB. Adaptation to space perception. In Boff
KR, Kaufman L, Thomas JP (editors). Handbook of
perception and human performance, Vol. 24. Wiley;
1986. p 24–25.

11. Welch RB, Bridgeman B, Anand S, Browman K.
Alternating prism exposure causes dual adaptation
and generalization to a novel displacement. Percept
Psychophys 1993;54:195–204.

12. Imamizu H, Shimojo S. The locus of visual-motor
learning at the task or manipulator level: Implications
from intermanual transfer. J Exp Psych Hum Percept
Perform 1995;21:719–733.

13. Imamizu H, Uno Y, Kawato M. Internal repre-
sentations of the motor apparatus: Implications from
generalization in visuomotor learning. J Exp Psychol
Hum Percept Perform 1995;21:1174–1198.

14. Ghahramani Z, Wolpert DM. Modular decomposi-
tion in visuomotor learning. Nature 1997;386:392–
395.

15. Shadmehr R, Mussa-Ivaldi FA. Adaptive repre-
sentation of dynamics during learning of a motor
task. J Neurosc 1994;14:3208–3224.

16. Brashers-Krug T, Shadmehr R, Bizzi E. Consolida-
tion in human motor memory. Nature 1996;382:252–
255.

17. Conditt MA, Gandolfo F, Mussa-Ivaldi FA. The mo-
tor system does not learn the dynamics of the arm by
rote memorization of past experience. J Neurophysiol
1997;78:554–560.

18. Sheidt RA, Conditt MA, Reinkensmeyer DJ, Mussa-
Ivaldi FA. Motor adaptation persists in the absence of
kinematic errors. Soc Neurosci Abstr 85.4, 1997.

19. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino
R, Yoshioka T, Putz B, Kawato M. Multiple repre-
sentations for visuomotor learning in the cerebellum:
A functional MRI study. Neuro Image Vol. 7, No.
S819, 1998.

20. Flash T, Hogan N. The coordination of arm move-
ments: An experimentally confirmed mathematical
model. J Neurosci 1985;5:1688–1703.

92



AUTHORS (from left to right)

Eri Nakano completed her doctoral course at Kobe University in 1999 and became a visiting researcher at Advanced
Telecommunications Research Institute International. She holds a Ph.D. degree. She is engaged in psychological and
computational theoretic research on human movement control and learning mechanism. She is a member of the Japanese
Psychological Association, the Japan Society of Neuroscience, and the North American Society of Neuroscience. Since 2001,
she has been with the Digital Human Laboratory, National Institute of Advanced Industrial Science and Technology.

John R. Flanagan obtained a Ph.D. (psychology) degree from McGill University in 1992. He was an MRC postdoctoral
fellow at the University of Cambridge in 1992. He was a research associate at Columbia University in 1994, and has been one
at Queen’s University since 1995. He is engaged in psychological and computational theoretic research on human movement
control and learning mechanism. He is a member of the North American Society of Neuroscience and the Society for the Neural
Control of Movement.

Hiroshi Imamizu obtained his doctoral course credits and left from the Cultural Science Research Division of the
University of Tokyo in 1987. He was a visiting researcher at ATR Human Information Processing Research Laboratories in
1992. He has been a Group Leader in the Kawato Dynamic Brain Project of the Japan Science and Technology Corporation.
He is engaged in psychological and computational theoretic research on human movement and learning mechanism. He holds
a doctoral (psychology) degree. He is a member of the Japanese Psychological Association, the Japan Society of Fundamental
Psychology, the Japan Society of Developmental Psychology, the North American Society of Vision and Ophthalmology, the
North American Society of Neuroscience, and the Japan Society of Neuroscience. 

Rieko Osu obtained the recognition of research guidance in the second half of her doctoral course and left the Literature
Research Division of Kyoto University. She became a Training Researcher at ATR Human Information Processing Research
Laboratories in 1996. She holds a Ph.D. degree. She has been a researcher at the Kawato Dynamic Brain Project of the Japan
Science and Technology Corporation since 1996, engaged in research on movement function of the living body. She is a member
of the Japanese Psychological Association, the Japan Society of Neuroscience, and the North American Society of Neuroscience.

Toshinori Yoshioka graduated from the Department of Physics of Kyoto Sangyo University in 1988 and joined CSK Co.,
Ltd. He moved to the ATR Vision and Hearing Mechanism Research Laboratory in 1992, and beginning in 1993 he was engaged
in the development of research applications at ATR Human Information Processing Research Laboratories. In 1996, he joined
the Kawato Dynamic Brain Project of the Japan Science and Technology Corporation. He has been with Human Information
Science Laboratories since 2001.

93



AUTHORS (continued)

Mitsuo Kawato (member) completed his doctoral course at Osaka University in 1981. After serving as a research associate
and lecturer there, he moved to the ATR Vision and Hearing Mechanism Research Laboratory in 1988. In 1992, he became
Section Head of the Third Research Section of ATR Human Information Processing Research Laboratories. He has been with
Human Information Science Laboratories since 2001. He was a visiting professor at the Research Institute for Electronic Science
of Hokkaido University from 1992 to 1995, at Genoa University (Italy) and Kanazawa Institute of Technology since 1994, and
has concurrently been a General-Responsible-Person of the Kawato Dynamic Brain Project of the Japan Science and Technology
Corporation since 1996. He is engaged in research on computational theoretic neuroscience of the brain. He has received a
Yonezawa Award, Osaka Science Award, Director-General Award of the Science and Technology Agency, and Tsukahara Award.
He is Editor-in-Chief of Neural Networks as well as Editorial Director and a member of the Award Selection Committee of the
Japan Society of Neural Networks.

94


