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From the motor chauvinist’s point of view the entire
purpose of the human brain is to produce movement.
Movement is the only way we have of interacting
with the world. All communication, including speech,
sign language, gestures and writing, is mediated via
the motor system. All sensory and cognitive
processes may be viewed as inputs that determine
future motor outputs. 

Why do we need motor learning?

Learning involves changes in behaviour that arise
from interaction with the environment and is distinct
from maturation, which involves changes that occur
independent of such interaction. The goal of learning

is, in general, to improve performance). Whereas
some simple species show no motor learning, the need
for motor learning arises in species in which the
organism’s environment, body or task change.
Specifically, when such changes are unpredictable,
they cannot be pre-specified in a control system, and
therefore flexibility in the control process is required.
Skills such as running on complex terrains or
manipulating novel tools place a premium on motor
learning. Similarly, as body size and proportions
change with development, significant changes in the
controller are required. Finally, learning is the only
mechanism fast enough to allow us to master new
tasks that are specified by social conventions, such as
writing or dancing. 

Although much of our motor repertoire is acquired
during our lifetime, we do not start life with a motor
tabula rasa1. Many human traits that might be
assumed to be learned, such as facial gestures, are
seen in children born blind and deaf2. Such an innate
pattern of behaviour is driven by evolutionary
pressures to hardwire motor skills into the brain
before birth. The range of innate motor behaviours
across species, such as the fixed action patterns of
birds and bees in courtship and social interaction, is
truly remarkable. Innate wiring can speed up motor
skill acquisition by providing a good starting point for
future motor learning. However, there is likely to be
a trade-off between innate behaviour and the ability
to learn novel skills. Innate behaviour requires
pre-specifying neural connections and making them
robust to possible perturbing factors, but might leave
less flexibility for novel skills. Indeed, motor learning
can require the breaking down of relatively rigid
innately specified synergies manifest in reflexes and
central pattern generators3. 

To truly understand motor learning it must be
considered as a process that takes place both during an
individual’s life and over generations. Motor learning
is a consequence of the co-adaptation of the neural
machinery and structural anatomy3. For example, the
tremendous dexterous abilities of humans arise not
only from specific neuronal developments such as the
larger corticospinal tract but also from the anatomy of
the hand, with its specially evolved thumb. Generally
in motor learning we consider how the brain adapts to
control the body. However, it is also possible to fix the
controller (i.e. the brain) and adapt the system (the
body), or to co-adapt the two, which in general will
result in better performance than adapting only one.

Movement provides the only means we have to interact with both the world

and other people. Such interactions can be hard-wired or learned through

experience with the environment. Learning allows us to adapt to a changing

physical environment as well as to novel conventions developed by society.

Here we review motor learning from a computational perspective, exploring

the need for motor learning, what is learned and how it is represented, and the

mechanisms of learning. We relate these computational issues to empirical

studies on motor learning in humans.
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Adaptation of the body can occur both through
evolutionary pressures over generations or within the
individual’s life, for example in use-dependent muscle
hypertrophy. 

What is learned in motor learning?

From a computational viewpoint the brain is a
processing system that converts inputs to outputs.
The outputs are the motor commands acting on
ensembles of muscles and the inputs are the
aggregate of sensory feedback provided by our sense
organs and derived internally from an efference copy
of the descending motor command. Motor control can
be thought of as the process of transforming sensory
inputs into consequent motor outputs. The problem
of motor learning is one of mastering and adapting
such sensorimotor transformations.

The transformation between sensory and motor
signals can be broken down into kinematic and
dynamic transformations. Kinematic
transformations convert between coordinate systems,
such as between joint angles of the arm and the
position of the hand. For example, to control a
computer mouse, we must learn the kinematic
transformation between the location of the mouse and
the cursor on the screen. Dynamic transformations
relate motor commands to the motion of the system.
For example, we must also learn to relate the forces
applied to the mouse to its resulting movement, a
transformation that will depend on the inertia of the
mouse and the friction between the mouse and pad. 

Each transformation is bidirectional and to specify
the direction under consideration a definition is
adopted in which ‘forward’ indicates the causal

direction – for example, mapping motor commands
onto their sensory consequences. ‘Inverse’ indicates
the opposite direction, for example, transforming a
desired sensory consequence into the motor
commands that would achieve it. Although these
transformations are governed by the physics of our
bodies and environment, we distinguish the
representation of such transformations within the
central nervous system from the actual
transformations by the phrase ‘internal model’.
Thus, the internal forward dynamic model is a model
within the brain that can predict the sensory
consequence of an action4. 

Skilled motor behaviour requires both inverse and
forward internal models. Motor learning can be
viewed as the acquisition of forward and inverse
internal models appropriate for different tasks and
environments. We need to acquire an inverse model in
order to estimate accurately the motor commands
required to achieve a desired sensory response. The
feedforward control this allows is essential for most
natural movements in which feedback is available too
late to guide the movement. There have been many
control systems proposed in the literature that use
direct control, that is, control architectures that do
not explicitly use internal models. However, any good
controller can be thought of as implicitly
implementing an inverse model of the system being
controlled. A more contentious question is whether
the central nervous system (CNS) needs forward
models for control. 

We believe that to learn the appropriate motor
commands required for desired actions, the CNS
must also use a forward model to predict the sensory
consequences of these commands4–8. Such a
prediction can be used in several ways. It can be used
to cancel sensations arising from self-motion, which
explains our inability to tickle ourselves9. Forward
models can be used to estimate optimally the state of
the body and the environment, and might even be
used for mental practice. 

The inverse model takes as one if its inputs the
desired state of the system. At present there is a
debate as to whether the CNS specifies the desired
trajectory independently of the controller. In other
words, are planning (specification of the trajectory)
and execution (control) sequential stages?
Alternatively, one could consider the controller as a
dynamical system that generates behaviour without
the need for a detailed plan of the trajectory10. 

In summary, the acquisition of forward and
inverse models is requisite for learning motor tasks
that involve sequences of actions to achieve high-level
goals. There are two important problems in the
sequencing of actions: selecting the appropriate
sequence elements, and determining their timing.
Sensory feedback from one action is used not only to
evaluate that action but to trigger subsequent
actions7,11. How such complex tasks are learned is an
important future area of research. 
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What is the computational basis of motor learning?

There are three principal ways in which the learning
system can interact with the environment; these three
ways correspond to three computational paradigms for
learning: (1) supervised; (2) reinforcement; and (3)
unsupervised learning. We consider the motor learning
system taking in sensory inputs and producing motor
outputs. In supervised learning, the environment
provides, for each input, an explicit desired output or
target. The goal of the learning system is to learn the
mapping from inputs to outputs specified by this
teaching signal from the environment. The performance
of the learning system can therefore be measured by
the discrepancy between the system’s output and the
desired target – that is, the error. Mathematically, one
can define learning rules, such as the delta rule and
back-propagation12, that minimize the error as a
function of the parameters or ‘synaptic weights’ of the
system. These rules specify how to change the synaptic
weights so as to decrease the error on the output. 

In supervised learning the target output can be
provided by an external teacher, for example, during
imitation learning. However, the target output can also
be specified internally, based on sensory signals and
higher-level goals. Such self-supervised learning is
involved in the acquisition of a forward model that tries
to predict the sensory consequence of an outgoing motor
command. Here, the desired output of the model is
readily available – it is the actual sensory consequence.

Additional transformations might have to be
applied to the error signal before it can be used to train
an internal model. For example, when we throw a dart
the error we receive is in visual coordinates. This sensory
error must be converted into motor command errors

suitable to update the inverse model. The two principal
methods proposed in the motor control literature for
solving this problem are ‘distal supervised learning’13

and ‘feedback error learning’14. Distal supervised
learning uses a forward internal model of the system
to convert sensory errors into required changes to the
motor command; feedback error learning uses a simple
feedback controller to achieve the same conversion of
errors. Both these methods also address one of the
important problems arising from the redundancy of the
motor system – that the relationship between the inputs
and outputs of an inverse model can be one-to-many13. 

In reinforcement learning15, for each input to and
output from the learning system, the environment
provides feedback in the form of either reward or
punishment. The overall performance measure that
the system tries to maximize is the sum of total future
rewards, which can be weighted to favour immediate
gain over longer-term gain. This is distinct from
supervised learning in that the environment need not
provide a target behaviour at each point in time, but
instead simply specifies whether the overall behaviour
is good or bad. A second distinguishing property of
reinforcement learning is that the rewards or
punishments that the system receives can depend in
non-trivial ways on the history of past motor commands
of the learning system. Consider a thirsty person trying
to take a drink from a water fountain. We can regard
the amount of water per unit time ingested as a positive
reinforcement signal and the amount of water splashed
on the face as punishment. The person generates a long
sequence of motor commands for posture maintenance,
and movements of the mouth and lips. Clearly, the
amount of water drunk and splashed depends on the
whole sequence of actions. At the end of the task the
person is faced with the ‘temporal credit assignment’
problem: which set of past actions should be attributed
as good and which as bad? This is just the sort of problem
reinforcement learning algorithms are good at solving15. 

The concept of an overall punishment signal, or
cost, from reinforcement learning has been very
influential in motor control. Because of kinematic
redundancy almost any task can, in principle, be
achieved in infinitely many ways16. Given all the
possibilities, it is surprising that almost every study
of the way the motor system solves a given task shows
highly stereotyped movement patterns, both between
repetitions of a task and between individuals on the
same task. Such stereotypy arises when we consider
tasks within the optimal control framework17, in
which a dynamic system (e.g. the arm) must be
controlled so as to minimize a cost function (e.g. error
reaching to a target). Mathematically, optimal control
theory and reinforcement learning theory are
equivalent. The difference is in emphasis: the former
focuses usually on continuous state systems with
known dynamics and known cost function, whereas
the latter focuses on discrete state systems with
unknown dynamics and cost functions that have to be
learned through experience. An important idea in
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motor learning has been to try to reverse-engineer
the cost function the CNS uses18–20, that is, to
ascertain what is being optimized from observed
movement patterns and perturbation studies. For
example, it has been proposed that there is noise in
the motor command and that the amount of noise is
proportional to the magnitude of the motor
command21. In the presence of such noise the same
sequence of intended motor commands, if repeated
many times, will lead to a probability distribution
over movements. Aspects of this distribution, such as
the spread of positions or velocities of the hand at the
end of the movement, can be controlled by modifying
the sequence of motor commands22. In a simple
aiming movement, the cost is the final error, as
measured by the variance of the final position around
the target. Assuming the presence of signal-
dependent noise, a model that minimizes this cost
accurately predicts the trajectories of both saccadic
eye movements and arm movements22. 

Finally, in unsupervised learning, the
environment provides inputs but gives neither
desired targets nor any measure of reward or
punishment. One of the simplest forms of learning
rule for unsupervised learning is the Hebbian
learning rule. In this rule and later variants, the
strength of a connection is increased when there is a
coincidence of the firing of the pre-synaptic and post-
synaptic neuron. It has been shown that Hebbian
learning in simple linear networks23 implements an
unsupervised learning algorithm known as principal
components analysis (PCA). This algorithm finds a
lower dimensional representation of high
dimensional inputs such that this representation
preserves the most information available in the
inputs, although it does this under the highly
restrictive assumption that the inputs are Gaussian-
distributed. Hebbian learning models based on PCA
have been used to understand tuning properties of
visual cortical neurons24 and to implement simple
unsupervised learning methods for finding motor
primitives25. The main problem with purely
unsupervised learning is that there is no guarantee
that the representations learned will be useful for
decision making and control. 

Although there are many ways of implementing
these three computational paradigms for learning,
a powerful unifying framework for understanding
them is Bayesian learning. Supervised and
unsupervised learning can be seen as using Bayes
rule to combine the current model (‘the prior’) with
new data (‘the evidence’) to generate an updated
model (‘the posterior’). Bayesian decision theory
provides a framework for reinforcement learning, in
which the model and the cost function are both
learned from the environment. 

There is evidence that different neural structures
might be particularly adapted for different
computational forms of learning26. For example, the
dopaminergic systems in the basal ganglia have been

tied to signals that one would expect in reinforcement
learning, such as expected reward27, and dysfunctions
of these systems are related to movement disorders,
addiction and other problems that could be related to
reinforcement signals. Similarly, signals in the
cerebellum have been linked to errors required for
supervised learning28. It has been shown that
climbing fibres, which might act as a training signal
to the cerebellum, code reaching errors at the end of
a movement29. 

What makes motor control difficult?

The algorithms discussed in the previous section can
in theory be used to learn internal models required for
skilled performance. However, there are several
features of the human motor system that significantly
complicate learning and control. First, there are
considerable time delays in both the transduction and
transport of sensory signals to the CNS. For example,
visual input can take around 100 ms to be processed.
When this sensory delay is combined with efferent
delays associated with movement, the combined
delay is appreciable. As a consequence, sensory
information cannot be used to guide the initial part
of a movement and skilled performance requires
feedforward control supported by inverse models. 

However, there is still a problem of temporally
registering actual and desired behaviour. By
temporally advancing sensory signals through
prediction, forward models can be used to co-register
actual and desired behaviour. In addition to delays,
the sensory inputs and motor commands suffer from
intrinsic neural noise, which limits the ability of the
motor system to perform simultaneously rapid and
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accurate movements21,22,30. To counteract the effect of
such noise the CNS can optimally estimate the
current state by combining the actual sensory
feedback with a forward model’s predictions5. 

The musculo-skeletal system is highly non-linear,
in the sense that summing two sequences of motor
commands does not result in the sum of the
corresponding movements. Furthermore, the
relationship between motor commands and
movements (i.e. the dynamics) changes every time
we interact with a novel object or environment; this
property of being ever-changing is known as
non-stationarity. One suggestion is that such
complex non-linear and non-stationary behaviour
can be achieved through learning multiple simple
internal models31–33. 

Finally, the motor system receives thousands of
sensory inputs and ultimately controls thousands of
motor units, which gives it a very high-dimensional
control problem to solve. For example, consider the
600 or so muscles in the human body as being, for
extreme simplicity, either contracted or relaxed.
This leads to 2600 possible motor activation patterns,
more than the number of atoms in the known
universe. Representing such high dimensional data
is implausible. One solution to this is to generate
lower dimensional representations of this high
dimensional space10. 

How is motor learning represented?

In principle, internal models can be represented in
motor memory in many different ways. How they are
represented in the CNS has important functional
implications. The representation determines the
coordinate systems of the neurons’ code and what

changes to the mapping are easy to learn. We can
distinguish between two extremes of representation.
Lookup tables simply store the output for each
possible setting of the input. Lookup tables are
infinitely flexible, but suffer from their inability to
generalize to novel inputs. They are also
computationally costly as they grow in size
exponentially with the dimension of the input. These
problems with lookup tables can be partly alleviated
by allowing some local generalization and by limiting
the table to only relevant parts of the input space,
that is, inputs that have been experienced. This
approach has been successfully implemented for
adaptive robot controllers and proposed as a model of
human motor learning31,34. 

At the other extreme are parametric
representations, such as the kinematics equations
one would find in a robotics textbook that relate joint
angles and link lengths to the position of the hand.
Such representations are not very flexible as they can
only model mappings obtained by varying the small
number of parameters. On the other hand, they
generalize globally to changes in these parameters
(e.g. changes in the link lengths). In between these
two extremes are mappings that generalize within a
limited region of the input space. For example, basis
function representations represent the mapping by
combining a number of local ‘basis functions’ of the
input35,36. A basis function is a unit with a local
receptive field, for example, a unit whose activity
decreases with distance from its preferred stimulus
(the centre of the basis function). 

One way in which the representation can be
examined is to alter the input–output mapping over
a limited region and examine the subsequent
generalization to novel inputs33,37,38. Any changes in
the input–output mapping for inputs not experienced
during the training are attributable to the nature of
the representation. For example, when a single
visual location was remapped to a novel hand
location, the entire visuomotor map was found to
rearrange, suggesting that there is a global
representation of this mapping39. Furthermore, the
change in this mapping was most consistent with a
representation based on spherical coordinates
centred about the eye. Dynamic mappings have been
examined by asking subjects to make point-to-point
movements in a force field generated either by a
robot attached to their hand40 or by a rotating
room41. Over time they adapt and are able to move
naturally in the presence of the field. Using this
paradigm it has been shown that: (1) learning of
dynamics generalizes in joint-based coordinates40;
(2) learning depends on the states experienced but
not on the order in which they are experienced42; and
(3) state-dependent fields are learned more
efficiently than temporally changing fields43. In
addition, both forward and inverse models are
simultaneously adapted during learning, with the
forward model leading44,45.
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What are the building blocks of motor learning?

Recently, focus has begun to shift away from examining
learning of a single internal model to consider how we
are able to learn a variety of tasks. Many situations
that we encounter are derived from a combination of
previously experienced situations, such as novel
conjoints of manipulated objects and environments.
Internal models can be regarded conceptually as motor
primitives, which are the building blocks used to
construct intricate motor behaviours with an enormous
range. By modulating the contribution to the final
motor command of the outputs of a set of internal
models, an enormous repertoire of behaviour can be
generated. One architecture that is capable of learning
to act in multiple situations is the MOSAIC model32,46.
In this architecture a set of forward models (predictors)
are used as a set of hypothesis testers to assess which
predictor best models the current task. This
information is then used to weight the outputs of a set
of corresponding inverse models (controllers). This
system can simultaneously learn multiple predictors
and controllers as well as how to select the controller
appropriate for a given task. 

Recent studies have shown that after learning two
different contexts the CNS can appropriately mix the
outputs; this has been demonstrated within the
visuomotor domain47, and across the visuomotor and
dynamic domains48. Our understanding of the
mechanisms of motor learning has gained from
examining how learning one task can interfere with
learning others. When trying to learn two different
dynamics49,50 or visuomotor rearrangements51,
interference occurs when they are presented in quick
succession but not when they are separated by

several hours. This suggests that motor learning
undergoes a period of consolidation during which
time the motor memory is susceptible to being
disrupted. However, if the context is different then
opposite internal models can be simultaneously
maintained in motor working memory and
subsequently consolidated. For example, subjects
can learn and consolidate two opposing force fields if
the position of the forearm is different for the two
fields (in this experiment, subjects held a handle,
which was either vertical or horizontal)50. This
suggests that the internal model captures a
mapping between motor commands and sensory
consequences that is determined by the force field
but does not represent the force field per se.
Moreover, experiments have shown that subjects are
able to learn visuomotor and dynamic
transformations independently when presented in
close temporal proximity and even when presented
in parallel48,51. Thus, sensorimotor modality might
be an important factor influencing the organization
of motor working memory. 

Recent evidence indicates that the cerebellum
plays a central role in the long-term storage of
internal models29,52–55. In addition it has been
suggested that the spinal cord stores a small set of
motor primitives or basis functions56. The idea is to
simplify control by combining a small number of
primitives, for example, patterns of muscle
activations (synergies), in certain pre-specified
proportions rather than individually controlling
each muscle57,58. 

How does motor learning relate to perception and

cognition?
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As stated at the beginning of this article, direct
information transmission between people, such as
speech, arm gestures or facial expressions, is mediated
through the motor system, which provides a common
code for communication. An important idea in
psychology is that perception of the action of others,

including speech, involves the action system59. Others’
actions are decoded by activating one’s own action
system at a subthreshold level and there appear to be
special neural mechanism for decoding such
information. Recently, these ideas have gained
empirical support in neuroscience with the finding of
‘mirror neurones’, which respond both to self-generated
actions and the actions of others60,61. Human
neuroimaging and magnetic stimulation studies have
shown that the areas associated with action are also
active during imitation and observation62–64. Moreover,
premotor systems are activated when subjects view
manipulable tools or even action verbs65,66. 

It could be that the same computational processes
underlie action, the perception of action, and social
cognition. Indeed we can draw analogies among them.
In motor control, a forward dynamic model can be used
to predict the sensory consequences of our actions and
an inverse model can be used to determine motor
commands given desired actions. In perception of
action we could use an inverse model to compute the
motor commands that we would have to use to
generate the same action. Alternatively, forward
models could be used to make multiple predictions, and
based on the correspondence between these predictions
and the observed behaviour we could infer which of our
controllers would be used to generate the observed
action. Finally, in social interaction, a forward social
model could be used to predict the reactions of others
to our actions. An inverse social model allows us to
come up with appropriate actions to gain desired
social outcomes. Although the behaviour of others in
response to our actions is more noisy and non-linear
then the response of our arm to a motor command,
computationally they are not fundamentally different. 

• What are the common elements of motor learning and other forms of
learning? Are the differences between motor and other forms of learning
(e.g. perceptual) at a cellular level or a systems level? 

• How are internal models of external objects, such as tools, integrated
with the internal models of our own body, such as the arm? 

• What are the characteristics of motor tasks that lead to competition in motor
working memory and are there multiple motor working memory systems? 

• Are the internal models that are used in action also used in perception
and cognition? 

• Can certain pathologies, such as Parkinson’s disease, apraxia or motor
tics, arise from learning mechanisms that have gone awry? 

• Can principles of motor learning be applied to the creation of more
adaptive robots and neural prostheses?

Questions for future research
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In the early 1930s, the Russian psychologist
Alexander Luria embarked on a research expedition
to Uzbekistan in Central Asia. Years later, Luria
became internationally known for his pioneering
work in neuropsychology but at this early stage in his
career, he was interested in what he and his close
colleague L.S. Vygotsky thought of as the ‘historical
nature’ of psychological processes – the extent to
which reasoning, memory and categorization are
shaped by the social and economic practices of a given

era1,2. Faced with the upheavals throughout the
Soviet Union under Stalin, Luria and Vygotsky
realized that a vast social experiment was taking
place that would allow them to test their ideas.
Peasants who had never been to school and had
always worked in a traditional, non-technological
economy involving animal husbandry, gardening and
cotton crops were being given one or two years of basic
education, taught to read and write, and inducted into
collective farming. More generally, a cultural
transformation that might ordinarily take several
generations was being compressed into a few short
years. In Uzbekistan, Luria and his colleagues gave a
number of cognitive tests to two groups of peasants on
either side of this historical chasm: ‘traditional’
peasants who had never been to school and continued
to work within the pre-Revolutionary, peasant
economy, and ‘educated’peasants who had received a
basic education, learned to read and write, and were
working within a collective.

A long tradition of research suggests that children and adults with no formal

education are prone to reason only on the basis of their first-hand experience,

and do not encode and reason from novel generalizations supplied by other

people. However, recent research reveals that when given simple prompts,

even pre-school children can reason from adults’ unfamiliar claims. A radical

implication of these findings is that young children arrive at school with a

pre-existing capacity for thinking and reasoning about the unknown. The

assumption that early learning should be rooted in children’s own empirical

experience could be mistaken.

Thinking about the unknown
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